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LASSO Regression
" JEE

m LASSO: least absolute shrinkage and selection operator

m New objective: el
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Geometric Intuition for Sparsity
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LASSO Coefficient Path
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Sparsistency eqpieal

m Typical Statistical Consistency Analysis:

1 Holding model size (p) fixed, as number of samples (N) goes to
infinity, estimated parameter goes to true parameter

st g, O =) O brue prarn 7
, os ,
m Here we want to examine p >> N domains

m Let both model size lQ and sample size N go to infinity!
[ Hard case:{N = klog p

©Emily Fox 2014 6




Sparsistency

“
m Rescale LASSO objective by N:

m Theorem (Wainwright 2008, Zhao and Yu 2006, ...):

Under some constraints on the design matrix X, if we solve the LASSO
regression using

Then for some ¢,>0, the following holds with at least probability

The LASSO problem has a unique solution with support contained
within the true support

. . A, _ .
Ifjenslzg*) 87| > caAn, for some c,>0, then S(3) = S(3*)
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fMRI Prediction Subtask
" JEEE
m Goal: Predict semantic features from fMRI image
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Fused LASSO
= JEEE

m  Might want coefficients of neighboring
voxels to be similar

m How to modify LASSO penalty to account for this?

m Graph-guided fused LASSO
1 Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
O Penalty:
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Generalized LASSO
= JEE

m Assume a structured linear regression model:

m If Dis invertible, then get a new LASSO problem if we substitute

m Otherwise, not equivalent

m For solution path, see
Ryan Tibshirani and Jonathan Taylor, “The Solution Path of the
Generalized Lasso.” Annals of Statistics, 2011.
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Generalized LASSO
" S

. 1
B = argmin S|y — B3 + AIDBI
BeRn

Let D = . This is the 1d fused lasso.
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Generalized LASSO
= JEE

R .1
= argmin 5 ly — 513 + AIDBIL
BeR™

Suppose D gives “adjacent” differences in 3:

where adjacency is defined according to a graph G. For a 2d grid,
this is the 2d fused lasso.
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Generalized LASSO
" JEEE

R 1
fy = argmin 5”1/ — B3+ AIDB|
BERn

-1 2 -1 0
0 -1 2 -1 .. o _
Let D = 0 0 —1 2 ... |- Thisis linear trend filtering.
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Generalized LASSO
= JEEE

. 1
By = argmin  ly — B + MDAl
BeER™

-1 3 =3 1 ...
0 -1 3 -3 ... _ o
Let D = 0 0 —1 3 ... |- Getquadratic trend filtering.
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Generalized LASSO
" D

m Tracing out the fits as a function of the regularization parameter

ﬁ)\ for A =25 B)\ for A € [0, 00]
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LASSO Algorithms
* JEE—
m Standard convex optimizer

m Now: Least angle regression (LAR)
Efron et al. 2004
Computes entire path of solutions
State-of-the-art until 2008

m Next up:
Pathwise coordinate descent (“shooting”) — new
Parallel (approx.) methods
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LARS — Efron et al. 2004
" JEEE

m LAR is an efficient stepwise variable selection algorithm
“useful and less greedy version of traditional forward selection methods”

m Can be modified to compute regularization path of LASSO
- LARS (Least angle regression and shrinkage)

m Increasing upper bound B, coefficients gradually “turn on”
Few critical values of B where support changes
Non-zero coefficients increase or decrease linearly between critical points
Can solve for critical values analytically

m Complexity:

©Emily Fox 2014 20

10



LASSO Coefficient Path
= JEE

0.7

=== |cavol

0.6} == Iweight

—O— age

—6— Ibph

051 @ svi

lcp

0.4 | =—©— gleason b
—6— pgg45 From

0.3} 41 Kevin Murphy
textbook

0.2} 1

0.1}

_02 . L .
0 0.5 1 1.5 2

©Emily Fox 2014 21

LARS — Algorithm Overview
" JEE

m  Start with all coefficient estimates

m Let A be the “active set” of covariates most correlated with the
“current” residual

m Initially, A= {le} for some covariate Zj,

m Take the largest possible step in the direction of X, until another
covariate x j, enters A

= Continue in the direction equiangular between ;, and T, until a third
covariate x j, enters A

= Continue in the direction equiangular between  ;,, X j,, T, until a
fourth covariate @© j4 €nters A

m This procedure continues until all covariates are added at which point
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Comments
" JE
m LARS increases A, but LASSO allows it to decrease

m Only involves a single index at a time
m If p> N, LASSO returns at most N variables

m If group of variables are highly correlated, LASSO tends to
choose one to include rather arbitrarily
Straightforward to observe from LARS algorithm....Sensitive to noise.

©Emily Fox 2014 23

More Comments
" JEE
m In general, can’t solve analytically for GLM (e.g., logistic reg.)

Gradually decrease A and use efficiency of computing B(Ak) from B(/\k_l)
= warm-start strategy

See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If N > p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO
(Zou & Hastie 2005)

Elastic net is hybrid between LASSO and ridge regression
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Scaling Up LASSO Solvers
" JEE
m Another way to solve LASSO problem:
Stochastic Coordinate Descent (SCD)
Minimizing a coordinate in LASSO
m A simple SCD for LASSO (Shooting)
Your HW, a more efficient implementation! ©
Analysis of SCD
m Parallel SCD (Shotgun)
m Other parallel learning approaches for linear models

Parallel stochastic gradient descent (SGD)
Parallel independent solutions then averaging




Coordinate Descent
= JEE

m Given a function F
1 Want to find minimum

m Often, hard to find minimum for all coordinates, but easy for one coordinate

m Coordinate descent:

= How do we pick a coordinate?
m  When does this converge to optimum?
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Stochastic Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence
Pick a coordinate j at random

n Set: A (Cj + )\)/aj c; < -
B = 0 cj € [=A A
(cj—)\)/aj Cj>)\
= Where:
N N
a;=2) () =22 w0 - Aty
i=1 =1
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An a IyS i S Of S C D [Shalev-Shwartz, Tewari '09/°11]

m  Analysis works for LASSO, L1 regularized logistic regression, and other objectives!

m  For (coordinate-wise) strongly convex functions:

m  Theorem:
Starting from
After T iterations

Where E[ ] is wrt random coordinate choices of SCD

m  Natural question: How does SCD & SGD convergence rates differ?
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Shooting: Sequential SCD
" JEEE

Lasso: MinF(B) where  F(B)=IXB-yI+A1pI, }

F () contour

/Stochastic Coordinate Descent (SCD)
(e.g., Shalev-Shwartz & Tewari, 2009)

While not converged,
o Choose random coordinate j,
» Update S ; (closed-form minimization)

-
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Shotgun: Parallel SCD (sradiey et ai 11
" J—

(Lasso: minF(B) where F(B)=IXp-yIE+AIBI, |

Shotgun (Parallel SCD)
While not converged,
» On each of P processors,
o Choose random coordinate j,
» Update S ; (same as for Shooting)
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Is SCD inherently sequential?
" JE
| Lasso: minF(f) where  F(B)=IXB-yIE +211 1, |

Coordinate update:
B, < B;+3p;

(closed-form minimization)

Collective update:

op,
0
AB=| 0
3B,
0
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Is SCD inherently sequential?
" J—
Lasso: minF(B) where  F(B)=IXB-yIE+AlAI, |

ﬁheorem: If X is normalized s.t. diag(X"™X)=1, \
F(B+AB)-F(B)
= _'E ((5/3,-_7_ )2 + E (XTX)i_,-,ik 6ﬁij(5ﬁik

leP lj,ikep,
Jj=k

. /

ooooooooooooo
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Is SCD inherently sequential?

" JEE
Theorem: If X is normalized s.t. diag(X"™X)=1,

F(B+AB)-F(p)
S(o) e 3 (), o8
i,EP

. iy
i i EP,

Jj=k

Nice case:
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Bad case:

Uncorrelated % Correlated
features features

Shotgun: Convergence Analysis
" 0000
Lasso: minF(B) where  F(B)=IXB-yIE+AlAI, |

Assume # parallel updates P <p/p+1

Generalizes bounds for Shooting (Shalev-Shwartz & Tewari, 2009)

ooooooooooooo
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Convergence Analysis
" JJEE
| Lasso: minF(f) where F(B)=IXB-yIE +211 1, |

Theorem: Shotgun Convergence

Assume P<p/p+1 Nice case:
where O = spectral radius of XTX Uncorrelated \@
features 4
E[F(B™)]-F(p%) P=—= o= —
Bad case: {Qa\
<p’(% g1 +F(ﬁ(0))) Correlated \@Q\
- TP features N
p=__= Pmax = (atworst)
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Empirical Evaluation
* JEE—
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* JEE
m  Stochastic coordinate ascent
Optimization:
Parallel SCD:
Issue:

Solution:

m  Natural counterpart:
Optimization:

Parallel
Issue:

Solution:
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Parallel SGD with No Locks

[e.g., Hogwild!, Niu et al. “11]
" JE
m Each processor in parallel:

Pick data point i at random
Forj=1...p:

m  Assume atomicity of:

©Emily Fox 2014 40
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Addressing Interference in Parallel SGD
“
m Key issues:
Old gradients

Processors overwrite each other’'s work

m Nonetheless:
Can achieve convergence and some parallel speedups
Proof uses weak interactions, but through sparsity of data points

©Emily Fox 2014 a

Problem with Parallel SCD and SGD
" JEE
m Both Parallel SCD & SGD assume access to current estimate of
weight vector

m  Works well on shared memory machines

m Very difficult to implement efficiently in distributed memory

m  Open problem: Good parallel SGD and SCD for distributed setting...
Let’s look at a trivial approach

©Emily Fox 2014 42
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Simplest Distributed Optimization

_ Alﬁorithm Ever Made

Given N data points & P machines
m  Stochastic optimization problem:
m Distribute data:

m  Solve problems independently

m  Merge solutions

m  Why should this work at all????

For Convex Functions...
" SN

m Convexity:

m Thus:

22



Hopefully...

~ m  Convexity only guarantees:

m  But, estimates from independent data!

Figure from John Duchi
©Emily Fox 2014 a5

Analysis of Distribute-then-Average

[Zhang et al. *12]
" JEE
m Under some conditions, including strong convexity, lots of
smoothness, and more...

m [f all data were in one machine, converge at rate:

m  With P machines, converge at a rate:
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Tradeoffs, tradeoffs, tradeoffs,...
* JE
m Distribute-then-Average:
“Minimum possible” communication
Bias term can be a killer with finite data

= Issue definitely observed in practice
Significant issues for L1 problems:

m Parallel SCD or SGD
Can have much better convergence in practice for multicore setting
Preserves sparsity (especially SCD)
But, hard to implement in distributed setting
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What you need to know
" JEE—
m Sparsistency
m Fused LASSO
m LASSO Solvers
LARS
A simple SCD for LASSO (Shooting)

= Your HW, a more efficient implementation! ©
= Analysis of SCD

Parallel SCD (Shotgun)
m Other parallel learning approaches for linear
models

Parallel stochastic gradient descent (SGD)
Parallel independent solutions then averaging
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