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Case Study 3: fMRI Prediction 

LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 

©Emily Fox 2014 3 

4

Picture of Lasso and Ridge regression
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Soft Threshholding  
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LASSO Coefficient Path  

©Emily Fox 2014 5 

From  
Kevin Murphy 
textbook 

Sparsistency 

n  Typical Statistical Consistency Analysis:  
¨  Holding model size (p) fixed, as number of samples (N) goes to 

infinity, estimated parameter goes to true parameter 

n  Here we want to examine p >> N domains 
n  Let both model size p and sample size N go to infinity! 

¨  Hard case: N = k log p 

©Emily Fox 2014 6 
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Sparsistency 

n  Rescale LASSO objective by N: 

n  Theorem (Wainwright 2008, Zhao and Yu 2006, …): 
¨  Under some constraints on the design matrix X, if we solve the LASSO 

regression using 

     
     Then for some c1>0, the following holds with at least probability 
 
 
•  The LASSO problem has a unique solution with support contained 

within the true support 
•  If        for some c2>0, then  
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min
j2S(�⇤)

|�⇤
j | > c2�n S(�̂) = S(�⇤)
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Case Study 3: fMRI Prediction 



5 

fMRI Prediction Subtask 

©Emily Fox 2014 9 

n  Goal: Predict semantic features from fMRI image 

Features 
of word 

Fused LASSO 
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n  Might want coefficients of neighboring  
voxels to be similar 

n  How to modify LASSO penalty to account for this? 

n  Graph-guided fused LASSO 
¨  Assume a 2d lattice graph connecting neighboring pixels in the fMRI image 
¨  Penalty: 
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Generalized LASSO 
n  Assume a structured linear regression model: 

n  If D is invertible, then get a new LASSO problem if we substitute 

n  Otherwise, not equivalent 

n  For solution path, see  
Ryan Tibshirani and Jonathan Taylor, “The Solution Path of the 
Generalized Lasso.” Annals of Statistics, 2011. 

©Emily Fox 2014 11 

Generalized LASSO 
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The fused lasso

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Let D =

2

664

�1 1 0 0 . . .
0 �1 1 0 . . .
0 0 �1 1 . . .
...

3

775. This is the 1d fused lasso.
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The fused lasso

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Suppose D gives “adjacent” di↵erences in �:

Di = (0, 0, . . .� 1, . . . , 1, . . . 0),

where adjacency is defined according to a graph G. For a 2d grid,
this is the 2d fused lasso.

Generalized LASSO 
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Trend filtering

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Let D =

2

664

�1 2 �1 0 . . .
0 �1 2 �1 . . .
0 0 �1 2 . . .
...

3

775. This is linear trend filtering.
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Generalized LASSO 

©Emily Fox 2014 15 

Trend filtering

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Let D =

2

664

�1 3 �3 1 . . .
0 �1 3 �3 . . .
0 0 �1 3 . . .
...

3

775. Get quadratic trend filtering.
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n  Tracing out the fits as a function of the regularization parameter 
Visualization of the path

We can choose D to get a piecewise quadratic fit.
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LASSO Algorithms  

©Emily Fox 2014 19 

n  Standard convex optimizer 
n  Now: Least angle regression (LAR) 

¨  Efron et al. 2004 
¨  Computes entire path of solutions  
¨  State-of-the-art until 2008 

n  Next up: 
¨  Pathwise coordinate descent (“shooting”) – new 
¨  Parallel (approx.) methods 

LARS – Efron et al. 2004 

©Emily Fox 2014 20 

n  LAR is an efficient stepwise variable selection algorithm 
¨  “useful and less greedy version of traditional forward selection methods” 

n  Can be modified to compute regularization path of LASSO 
¨  à LARS (Least angle regression and shrinkage) 

 
n  Increasing upper bound B, coefficients gradually “turn on” 

¨  Few critical values of B where support changes  
¨  Non-zero coefficients increase or decrease linearly between critical points 
¨  Can solve for critical values analytically 

n  Complexity:  
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LASSO Coefficient Path  

©Emily Fox 2014 21 

From  
Kevin Murphy 
textbook 

LARS – Algorithm Overview 

©Emily Fox 2014 22 

n  Start with all coefficient estimates 

n  Let       be the “active set” of covariates most correlated with the 
“current” residual 

n  Initially,    for some covariate 

n  Take the largest possible step in the direction of         until another 
covariate        enters  

n  Continue in the direction equiangular between         and        until a third 
covariate        enters 

n  Continue in the direction equiangular between       ,       ,        until a 
fourth covariate        enters  

n  This procedure continues until all covariates are added at which point    

A

xj1
A

xj1A = {xj1}

xj2

xj1 xj2
xj3 A

xj1 xj2 xj3
xj4 A
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Comments 

©Emily Fox 2014 23 

n  LARS increases     , but LASSO allows it to decrease 
 
n  Only involves a single index at a time 
 
n  If p > N, LASSO returns at most N variables 

n  If group of variables are highly correlated, LASSO tends to 
choose one to include rather arbitrarily 
¨  Straightforward to observe from LARS algorithm….Sensitive to noise. 

 
 
 

A

More Comments 

©Emily Fox 2014 24 

n  In general, can’t solve analytically for GLM (e.g., logistic reg.) 
¨  Gradually decrease λ and use efficiency of computing            from 

= warm-start strategy  
¨  See Friedman et al. 2010 for coordinate ascent + warm-starting strategy 

n  If N > p, but variables are correlated, ridge regression tends  
to have better predictive performance than LASSO  
(Zou & Hastie 2005) 
¨  Elastic net is hybrid between LASSO and ridge regression 

 
 

�̂(�k) �̂(�k�1)
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Case Study 3: fMRI Prediction 

Scaling Up LASSO Solvers 

n  Another way to solve LASSO problem: 
¨  Stochastic Coordinate Descent (SCD) 
¨  Minimizing a coordinate in LASSO 

n  A simple SCD for LASSO (Shooting) 
¨  Your HW, a more efficient implementation! J 
¨  Analysis of SCD 

n  Parallel SCD (Shotgun) 
n  Other parallel learning approaches for linear models 

¨  Parallel stochastic gradient descent (SGD) 
¨  Parallel independent solutions then averaging 

©Emily Fox 2014 26 
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Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick a coordinate? 

n  When does this converge to optimum?  

©Emily Fox 2014 27 

Soft Threshholding  

©Emily Fox 2014 28 

�̂j =

8
<

:

(cj + �)/aj cj < ��
0 cj 2 [��,�]

(cj � �)/aj cj > �

From  
Kevin Murphy 
textbook 
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Stochastic Coordinate Descent for LASSO 
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate j at random 

n  Set: 

n  Where:  

©Emily Fox 2014 29 

�̂j =

8
<

:

(cj + �)/aj cj < ��
0 cj 2 [��,�]

(cj � �)/aj cj > �

cj = 2
NX

i=1

x

i
j(y

i � �

0
�jx

i
�j)aj = 2

NX

i=1

(xi
j)

2

Analysis of SCD [Shalev-Shwartz, Tewari ’09/’11] 
n  Analysis works for LASSO, L1 regularized logistic regression, and other objectives! 

n  For (coordinate-wise) strongly convex functions: 

n  Theorem:  
¨  Starting from 
¨  After T iterations 

¨  Where E[ ] is wrt random coordinate choices of SCD 
 

n  Natural question: How does SCD & SGD convergence rates differ? 

©Emily Fox 2014 30 
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Shooting: Sequential SCD 

Stochastic Coordinate Descent (SCD) 
(e.g., Shalev-Shwartz & Tewari, 2009) 

While not converged, 
" Choose random coordinate j, 
" Update βj (closed-form minimization) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 

F(β) contour 

©Emily Fox 2014 31 

Shotgun: Parallel SCD [Bradley et al ‘11] 

Shotgun (Parallel SCD) 

While not converged, 
" On each of P processors, 
" Choose random coordinate j, 
" Update βj (same as for Shooting) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 

©Emily Fox 2014 32 
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Is SCD inherently sequential? 

Coordinate update: 

β j ← β j +δβ j

(closed-form minimization) 

Δβ =

"

#

$
$
$
$

%

&

'
'
'
'

Collective update: 
δβi

δβ j

0
0

0

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 

©Emily Fox 2014 33 

Is SCD inherently sequential? 

Theorem: 

F(β +Δβ)−F(β)

≤ − δβij( )
2

ij∈P
∑ + XTX( )ij ,ik δβijδβik

ij ,ik∈P,

j≠k

∑

If X is normalized s.t. diag(XTX)=1, 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 

©Emily Fox 2014 34 
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Is SCD inherently sequential? 

Nice case: 
Uncorrelated 
features 

Bad case: 
Correlated 
features 

Theorem: 

F(β +Δβ)−F(β)

≤ − δβij( )
2

ij∈P
∑ + XTX( )ij ,ik δβijδβik

ij ,ik∈P,

j≠k

∑

If X is normalized s.t. diag(XTX)=1, 

©Emily Fox 2014 35 

Shotgun: Convergence Analysis 

Assume # parallel updates 

€ 

P < d /ρ +1

Generalizes bounds for Shooting (Shalev-Shwartz & Tewari, 2009) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 

©Emily Fox 2014 36 

p
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Convergence Analysis 

≤
d 1

2 || β* ||2
2 +F(β (0) )( )
TP

E F(β (T ) )!" #$−F(β*)

Theorem: Shotgun Convergence 

Assume 

€ 

P < d /ρ +1
where  

€ 

ρ = spectral radius of XTX 

Nice case: 
Uncorrelated 
features 

ρ = __⇒ Pmax = __

Bad case: 
Correlated 
features 
ρ = __⇒ Pmax = __(at worst) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Stepping Back… 
n  Stochastic coordinate ascent 

¨  Optimization: 

¨  Parallel SCD: 

¨  Issue: 

¨  Solution: 

n  Natural counterpart: 
¨  Optimization: 

¨  Parallel 

¨  Issue: 

¨  Solution: 

©Emily Fox 2014 39 

Parallel SGD with No Locks        [e.g., Hogwild!, Niu et al. ‘11]  
n  Each processor in parallel: 

¨  Pick data point i at random 
¨  For j = 1…p:  

n  Assume atomicity of: 

©Emily Fox 2014 40 
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Addressing Interference in Parallel SGD 

n  Key issues: 
¨  Old gradients 

¨  Processors overwrite each other’s work 

n  Nonetheless:  
¨  Can achieve convergence and some parallel speedups  
¨  Proof uses weak interactions, but through sparsity of data points 

©Emily Fox 2014 41 

Problem with Parallel SCD and SGD 

n  Both Parallel SCD & SGD assume access to current estimate of 
weight vector 

n  Works well on shared memory machines 

n  Very difficult to implement efficiently in distributed memory 

n  Open problem: Good parallel SGD and SCD for distributed setting… 
¨  Let’s look at a trivial approach 

©Emily Fox 2014 42 
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Simplest Distributed Optimization 
Algorithm Ever Made 

n  Given N data points & P machines 
n  Stochastic optimization problem: 
n  Distribute data: 

n  Solve problems independently 

n  Merge solutions 

n  Why should this work at all???? 

©Emily Fox 2014 43 

For Convex Functions… 
n  Convexity: 

n  Thus: 

©Emily Fox 2014 44 
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Hopefully… 
n  Convexity only guarantees: 

n  But, estimates from independent data! 

©Emily Fox 2014 45 

The average mixture algorithm

Two pictures:

θ̂1
θ̂2

θ̂3
θ̂4

Duchi (UC Berkeley) Communication Efficient Optimization CDC 2012 7 / 21

Figure from John Duchi 

Analysis of Distribute-then-Average        [Zhang et al. ‘12]  

n  Under some conditions, including strong convexity, lots of 
smoothness, and more…  

n  If all data were in one machine, converge at rate: 

n  With P machines, converge at a rate: 

©Emily Fox 2014 46 
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Tradeoffs, tradeoffs, tradeoffs,… 
n  Distribute-then-Average: 

¨  “Minimum possible” communication 
¨  Bias term can be a killer with finite data  

n  Issue definitely observed in practice 
¨  Significant issues for L1 problems: 

n  Parallel SCD or SGD 
¨  Can have much better convergence in practice for multicore setting 
¨  Preserves sparsity (especially SCD) 
¨  But, hard to implement in distributed setting 

©Emily Fox 2014 47 

What you need to know 

n  Sparsistency 
n  Fused LASSO 
n  LASSO Solvers 

¨  LARS 
¨  A simple SCD for LASSO (Shooting) 

n  Your HW, a more efficient implementation! J 
n  Analysis of SCD 

¨  Parallel SCD (Shotgun) 

n  Other parallel learning approaches for linear 
models 
¨  Parallel stochastic gradient descent (SGD) 
¨  Parallel independent solutions then averaging 
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