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LASSO Regression
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m LASSO: least absolute shrinkage and selection operator

m New objective: el
win 2 -84 2 8,
ﬂ A‘»'W
Res(A)

0

e R5508) st 18I 2D

ooooooooooooo




Geometric Intuition for Sparsity
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LASSO Coefficient Path
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Sparsistency eqpieal

m Typical Statistical Consistency Analysis:

1 Holding model size (p) fixed, as number of samples (N) goes to
infinity, estimated parameter goes to true parameter

st g, O =) O brue prarn 7
, os ,
m Here we want to examine p >> N domains

m Let both model size lQ and sample size N go to infinity!
[ Hard case:{N = klog p
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Sparsistency
= JEE
m Rescale LASSO objective by N:
i L ORSS(8) » Ay ZJIKJ\

m Theorem (Wainwright 2008, Zhao and Yu 2006, ...):

Under some constraints on the design matrix X, if we solve the LASSO
regression using 2
]
W L | 20 [o4f
N X N

Then for some ¢,>0, the following holds with at least probability

I-—‘fcxp(“(,uN)‘:!\) —> |

The LASSO problem has a ulicMe solution with support contained

. within the true support
c‘,‘d"""u' If rglin 87| > c2 AW for some c,>0, then S(3) = S(3%)
jes(B
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fMRI Prediction Subtask %~ %
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* JEE—
m Goal: Predict semantic features from fMRI image
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Fused LASSO
= JEEE

m  Might want coefficients of neighboring
voxels to be similar

. . lon
Ascover imporcant veqions

m How to modify LASSO penalty to account for this?

m Graph-guided fused LASSO
1 Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
O Penalty:
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Generalized LASSO

m Assume a structured linear regression model:

Iy-xally + 3 1AL,
. De R

m If Dis invertible, then get a new LASSO problem if we substitute

Y P O ES S Lt

m Otherwise, not equivalent X new dESign ma ¥
qolve Fof /\”“w »
m For solution path, see e N - A

Ryan Tibshirani and Jonathan Taylor, “The Solution Path of the
Generalized Lasso.” Annals of Statistics, 2011.
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Generalized LASS / o .,.
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B = argmm *Ily BlI3 + DAl ws v

Let D = . This is the 1d fused lasso.
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Generalized LASSO
= JEE

. 1
By = argmin 5”1/ - 5”% + MDA
BeR™

Suppose D gives “adjacent differe;:gs in 3 >\§_ \)g{,ﬂs\x
D; =(0,0,...—1,...,1,...0), [AE

where adjacency is defined according to a graph G. For a 2d grid,
this is the 2d fused lasso. v NSy i mAAL
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Generalized LASSO
= JEEE

. 1
B = argmin _ly — BII3 + M| DBl
BeR™
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Let D = 0 0 —1 2 ... |- Thisis linear trend filtering.
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Generalized LASSO
= JEEE

. 1
By = argmin  ly — B + MDAl
BeER™

-1 3 =3 1 ...
0 -1 3 -3 ... _ o
Let D = 0 0 —1 3 ... |- Getquadratic trend filtering.
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Generalized LASSO
" D

m Tracing out the fits as a function of the regularization parameter

ﬁ)\ for A =25 B)\ for A € [0, 00]
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LASSO Algorithms
" JEE
m Standard convex optimizer

m Now: Least angle regression (LAR)
Efron et al. 2004
Computes entire path of solutions
State-of-the-art until 2008

m Next up:
Pathwise coordinate descent (“shooting”) — new
Parallel (approx.) methods

2 LR +
LARS = L’t.w;nk.se
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LARS — Efron et al. 2004
= JEE

m LAR is an efficient stepwise variable selection algorithm
“useful and less greedy version of traditional forward selection methods”

;C(o/]

= Can be modified to compute regularjzation path of LASSO
- LARS (Least angle regression and shrinkage)
-

m Increasing upper bound B, coefficients gradually “turn on”

Few critical values of B where support changes

Non-zero coefficients in itical points
ﬁ Can solve for critical values analytically €—_

m  Complexity:
O[m;" (N‘)I’PNL)) - Cosk Hf ﬁﬁ‘n%‘&
a.,ios B of Counrittes 1S soln
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LASSO Coefficient Path
= JEE
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LARS — Algorithm Overview
"
. - . a2 ~ 0
= Start with all coefficient estimates /5| .,ﬂl . /5? z

m Let Abe the “active set” of covariates most correlated with the
current” residual o __ \oas‘é n  Covrriakes A(/MJV " mm{{f

m Initially, A= {le} for some covariate Zj,

m Take the largest possible step in the direction of X, until another
covariate x j, enters A

= Continue in the direction equiangular between ;, and T, until a third
covariate x j, enters A

= Continue in the direction equiangular between  ;,, X j,, T, until a
fourth covariate @© j4 €nters A

m This procedure continues until all covariates are added at which point
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Comments

" JE—
m LARS increases A, but LASSO allows it to decrease
m Only involves a single index at a time

m If p> N, LASSO returns at most N variables

m If group of variables are highly correlated, LASSO tends to
% choose one to include rather arbitrarily
Straightforward to observe from LARS algorithm....Sensitive to noise.

\ogware of ‘m’czr?m*"m SNE
veriables inclaZed
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More Comments
" JEE
m In general, can’t solve analytically for GLM (e.g., logistic reg.)

Gradually decrease A and use efficiency of computing B(Ak) from B(/\k_l)
= warm-start strategy

See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If N > p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO
(Zou & Hastie 2005)

Elastic net is hybrid between LASSO and ridge regression
—

ARSI
[thee saill Some Tssues... deta] 1M ;,o,,L>
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Scaling Up LASSO Solvers
* JEE
m Another way to solve LASSO problem:
Stochastic Coordinate Descent (SCD)
Minimizing a coordinate in LASSO
m A simple SCD for LASSO (Shooting)
Your HW, a more efficient implementation! ©
Analysis of SCD
m Parallel SCD (Shotgun)
m Other parallel learning approaches for linear models

Parallel stochastic gradient descent (SGD)
Parallel independent solutions then averaging




Coordinate Descent
N

Given a function F/4)

01 Want to find minimum 5" < min F(ﬁ) &
-8

(8-, BP)

Often, hard to find minimum for all coordinates, but easy for one coordinate
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When does this converge to optimum?
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Stochastic Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence
1 Pick a coordinate j at random

= Set; (Cj + )\)/(lj cj < —=A f[l'/\
Bj = { 0 cj € [—)\, >\] < Si%" [c)) ( / >

/’—

(cj—)\)/aj Cj>)\ J

= Where: U"w' N

N
a;=2) (a})° ¢ =23 wy(y' = fLial;)
i=1 =1

— 7

COSY flf (&”&‘t"of\ O(‘N)
/
Can lor done wpgee :_Fﬁ'n:zm-\y. Prosf: HW -
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Analysis of SCD [wml&;ﬁﬂ

m  Analysis works for LASSO, L1 regularized logistic regression, and other objectives!

m  For (coordinate-wise) strongly convex functions: LASSa;

2

A
‘08 064, ol Loo. .
m  Theorem: nov " where we |
0 Starting from ﬁ“) &;M Skark "’74
* After Titerations / J fro™

% (e
B - v(er) ¢ p (el TFE ")
Tel aeks \"mufl/
Ptk g/ iers

1 Where E[ ] is wrt random coordinate choices of SCD

m  Natural question: How does SCD & SGD convergence rates differ?
Ser paber s D ) fastr w/ [war P oe— no param

SGd S Coskar w/ lovger N €= peds 7
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Shooting: Sequential SCD

N

Lasso: MinF(B) where  F(B)=IXB-yI+A1pI, J

/Stochastic Coordinate Descent (SCD)
(e.g., Shalev-Shwartz & Tewari, 2009)

While not converged,
o Choose random coordinate j,
» Update S (closed-form minimization)

-

Now b0 wt measa?
D apnoyin
..tlluga- it window

F () contour

hos any, fL?nD LLAM‘)M(?

y do 4 (ounA Yobn ikey o msr onverqence
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ShOtgun: Para”el SCD [Bradley et al *11]

(Lasso: minF(B) where F(B)=IXp-yIE+AIBI, |

Shotgun (Parallel SCD)
While not converged,
» On each of P processors,
o Choose random coordinate j,
» Update B ; (same as for Shooting)

Pro(esse’ s

act i€

8, ! ‘;"ET “"{"

\’\ ¢ only
@ chllmn
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Is SCD inherently sequential?
" JE
| Lasso: minF(f) where  F(B)=IXB-yIE +211 1, |

Coordinate update:
B; < B;+3p,;
(closed-form minimization) y i”
"\
26,

Collective update:

op,
0
AB=| 0
3B,
0
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Is SCD inherently sequential?
"
Lasso: minF(B) where  F(B)=IXB-yIE+AlAI, |

ﬁheorem: If X is normalized s.t. diag(X"™X)=1, \
F(B+AB)-F(P) ') c(c Cresse n ol,,J'zcc-ivc.

<- E ((5/31..]_ )2 + E (XTX)W 5ﬁij‘5ﬁik

iEP i; i EP,
~—, ek
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\ proavess cowld be @S- or hey

T
wintas ferance Y er “biag

Crom Fwalld.' M

ooooooooooooo

17



Is SCD inherently sequential?
" JEEE

Theorem: If X is normalized s.t. diag(X™X)=1, s rs MATINJC

&« \netr
F(ﬁ+A/3)—F(/3) ey 77 OF iostefrenc
M
XTX 5/3 B,

i zkEP

(X X J“ = ("X )J"
C"N M{-g/ﬁtfgn(&,

Nice case: Q Bad case:
Q Uncorrelated '{B Correlated
\ features features

SN
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Shotgun: Convergence Analysis
" S
| Lasso: minF(f) where  F(B)= Xp-yI; +AlI Bl |

Assume # parallel updates P <p /p +1 "
&, Svac{:fh( ('ﬁ&m.s 0{ X X

A
) -\' w2
elee”)) - FED) < 5 (18T « 26
——— \:;;’\ -
wk:/r; we T PG\ tt o processors
‘ﬂ'r ;7;_(5

linear S(MLJ uf) up to P proc

‘ Generalizes bounds for Shooting (Shale"v-shwartz & Tewari, 2009) ‘
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Convergence Analysis
" A
| Lasso: minF(f) where F(B)=IXB-yIE +211 1, |

Theorem: Shotgun Convergence
Assume P<p/p+1 Nice case:
where O = spectral radius of XTX Uncorrelated @
features NS
—_— P —_—
E[F(8™)]-F(p*) L= Fon = p
Bad case: {Qa\
p(% It g* 15 +F(ﬁ(0))) Correlated \%\Q\
< f DS
TP eatures >
o= . =P = | (at worst)
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Empirical Evaluation
" JEE

2 o(,ss:a»l COMPILSS'c} ﬂ{.lnf'v\j
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5 5
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5 by g o
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= 1 10 1000 = 1 3 4

P (# simulated parallel updates) P (# simulated parallel updates)
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Stepping Back...
* JEEE

m  Stochastic coordinate ascent  S¢ D . .
01 Optimization: P\Lk a coord. ) v f(r\J Mé"
J

O Parallel SCD: pick ? coord.
‘0’-—__‘
. . ctre
R [ mory ;,,tzfclr; on E__c_ir_x Sﬁ't’ s

o Solution: bOW\A POSQU& ;nt‘/c‘m(.4 hﬁ-&eJ /O

= Natural counterpart: & 6 D

1 Optimization: PiClC . Aa{_“‘”'mt a ,8&//3'72 VF(X-\/B)
O Parallel "(.LV- ‘P AAEAgD}ntS + ]nd (APCLA*Q 8

[ Issue:

CM .'Aklfcim_ on a(‘ CDOrA‘
=

1 Solution:

bounA \ntes er‘zn(_{
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Parallel SGD with No Locks

[e.g., Hogwild!, Niu et al. “11]
—

" JEEE
m Each processor in parallel:

[ Pick data point i at random
o Forj=1...p:

8, B, - 1L (VF (< 8);

e

= Assume atomicity of: 6 - ﬁ ra
J v

okher (nter CerancesS
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What you need to know
* JEE

m Sparsistency

m Fused LASSO

m LASSO Solvers

LARS
A simple SCD for LASSO (Shooting)

= Your HW, a more efficient implementation! ©
= Analysis of SCD

Parallel SCD (Shotgun)
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