Case Study 2: Document Retrieval

Clustering Documents

Machine Learning for Big Data
CSES47/STAT548, University of Washington

Emily Fox
January 23, 2014

©Emily Fox 2014 1

Document Retrieval
= JEE
m Goal: Retrieve documents of interest

m Challenges:
Tons of articles out there
How should we measure similarity?

Task 1: Find Similar Documents
= JEE

m So far... - Ve aovvom‘ﬂ

1 Input: Query article * W XWkS
7

71 Output: Set of k similar articles i% =)

Task 2: Cluster Documents
" JEEE
= Now:
1 Cluster documents based on topic
—_—

" be'l(newsll

a

= = \Huton’s Graphics [l
x1 "
tf«"‘ RO, rai ML
Some Data " | wheiac
" A
ey b [
X bao) OC Wo’JS
pr 0.6 T
U;;J-p
0.4 T
\'\OW o AIQCDVI/
2
S
L\uQ‘tlf 0.2 T
(« ,\g\,qu’v"""‘s : % % % : :
4 0 0.2 0.4 0.6 0.8 1 «0
_.i Auton’s Graphics [‘i_l|
K-means |
" A
1. Ask user how many T
clusters they’d like.
(e.g. k=5)
0.6 T
0.4 T
0,2 T
A 0 0,2 0.4 0.6 0.8 1 0

©Emily Fox 2014

Auton’s Graphics

K-means
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

0,2

0.4

0.6

0.8

x07

©Emily Fox 2014

Auton’s Graphics

3 5]

K-means
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)

0.8

0.6

0.4

0,2

0,2

0.4

0.6

0.8

x0

©Emily Fox 2014

= Auton’s Graphics I |

K-means |
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guessk | 5 T
cluster Center
locations

08 T

3. Each datapoint finds | 0.4 +
out which Center it's :
closest to.

4, Each Center finds
the centroid of the
points it owns

x07

©Emily Fox 2014 9

= Auton’s Graphics (=]

K-means |
" A

1. Askuserhowmany | os T
clusters they’d like.
(e.g. k=5)

2. Randomly guessk | ., +
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the o2 T
points it owns...

0.4 T

...and jumps there | 0.2 0.4

0.6 0.8 1 «01

...Repeat until
terminated!

©Emily Fox 2014 10

K-means
" JEE
m Randomly initialize k centers

O = O, ©

m Classify: Assign each point j[&{1,...N} to nearest

center: 2 s i dicater
2 < argmin||p; — x?||3 §F rescesk tertes
Z (“cluster
. . . Eht‘:(o-'br)
m Recenter: u, becomes centroid of its point: |
X
t+1 . j - &
P argmin Y [0 s L
jizi=i / /;‘b
Equivalent to u, <— average of its points! @0:2’:*‘
ﬁ 0{ e\S " g'lofw—" “

©Emily Fox 2014

Case Study 2: Document Retrieval

Parallel Programming
Map-Reduce

Machine Learning/Statistics for Big Data
CSES547/STAT548, University of Washington

Emily Fox
January 23, 2014

©Emily Fox 2014 12

Needless to Say, We Need

Machine Learning for Big Data
" N

7 PYNRIN
fickr]
19 o 5)
Ickr . Ex e ([Tube
6 Billion - 1 Billion 72 Hours a Minute

Flickr Photos 28 Million Facebook Users YouTube
Wikipedia Pages

Ehe New YJork Times
SundayReview

WORLD US. NY./REGION BUSINESS TEC

“... data a new class of economic
asset, like currency or gold.”

NEWS ANALYSIS
The Age of Big Data
By STEVE LOHR

CPUs Stopped Getting Faster...

10 ¢ u
E .
LD 1 T . N
8 B constant
fnd i =
®)
501 R -
g T [|
(8]
: .
Q
0.01 | | : : 1 1] |
o] o () < O 0] o (o] < O 0] o
0] D D (o)) D (o)) o o o o o i
(o)) (@)} (@)} [e)] [e)) [e)) o o o o o o
— ~— — — — ~— N N o [o\] (V] N

release date

©Emily Fox 2014

ML in the Context of Parallel

. gs0¢>
Architectures wort 90~
* JEEE— use
amazon
webservices™
GPUs Multicore Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability /(we'l! g0 UnfoWJL\ Yhese
2. Data distribution 10LAS - --
3. Failures

©Carlos Guestrin 2013

Programmability Challenge 1:
Designing Parallel programs

m SGD for LR:
1 For each data point x®:

w?*” e { =X + a0 - P = 116x), W)}
xm)((2%)

\) 1))

" \w{,) _4w'3)-’~ L wu}k’cs w

up sted
enhaf

a7

How Ab wt \)wml(ﬁl‘%&-

"4 Al hin

l;‘ﬂ~ ﬂddr\-ne)\) ;;/yns)
/" @f \Coﬂb'mc? “

Suboe{ oF dite

3

©Emily Fox 2014 16

Programmability Challenge 2:
Race Conditions

m We are used to seque

Read data, think, wiite data)read data, think, Wgite dat3] read data, thin read

data, think, write data, read data, think, write data; d data, think, write data=

m But, in parallel, you can have non-deterministic effects:

0= sEwws S
b9 Zyj%j’

——
m Called a race-condition:
Very annoying
One of the hardest problems to debug in practice:
= because of non-determinism, bugs are hard to reproduce

©Emily Fox 2014

Data Distribution Challenge
" S
\pcA s

m Accessing data:
Main memory reference: 100ns (107s)
Round trip time within data center: 500,000ns (5
Disk seek: 10,000,000ns (10-2s)

m Reading 1MB sequentially:

*10.43) 4_’ N'e ACC&SS

Local memory: 250,000ns (2.5 * 10s) 1 of;lfs Aﬁ .
Network: 10,000,000ns (10-2s) mMagridu Je J.('(}rmu
Disk: 30,000,000ns (3*10-2s) bt Memsr Y "3 “c&—/l.s

m Conclusion: Reading data from local memory is much faster = Must have
data locality:
Good data partitioning strategy fundamental!
“Bring computation to “(rather than moving data around)

©Emily Fox 2014

Robustness to Failures Challenge

m From Google’s Jeff Dean, about their clusters of 1800 servers, in

first year of operation:
1,000 individual machine failures
thousands of hard drive failures
one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
20 racks will fail, each time causing 40 to 80 machines to vanish from the network
5 racks will “go wonky,” with half their network packets missing in action
the cluster will have to be rewired once, affecting 5 percent of the machines at any given
moment over a 2-day span
50% chance cluster will overheat, taking down most of the servers in less than 5 minutes
and taking 1 to 2 days to recover

m How do we design distributed algorithms and systems robust
e—————

to failures?

It's not enough to say: run, if there is a failure, do it again... because
you may never finish

©Emily Fox 2014 19

Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability 4"
Data distribution
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:

Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...

Generally, you are still on your own WRT deWs

m Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers

Higher-level: L\
= Map-Reduce (Hadoop: open-source version): mostly-data-parallel problems 4 S
= GraphLab: for graph-structured distributed problems qua(('

©Emily Fox 2014 20

10

Simplest Type of Parallelism:

Data Parallﬁl Problems

%
m You have already learned a classifier W

)
What's the test error? Lf{ z "" \/IA\ 5\57\ (W XM>
= You have 10B labeled documer‘ffs aplc‘l 10(30 machines
bpo
1
Oﬂ(; lota"y [ompu*mj
\‘o e ervor on subsek
\5 a\léf?‘/ ofF deta
ev’ cesy

m Problems that can be broken into independent subproblems are

called idgta-garallel (or embarrassingly parallel)
m Map-Reduce is a great tool for this...
Focus of today’s lecture
but first a simple example

©Emily Fox 2014 21

Data Parallelism (MapReduce)

a2P& N8 - FESY

o

Ccl’)1

5 J 5

H
o)
~N o
N
E)
o =]
RSN
w
A
P
w S w
00 "N
AN

Solve a huge number of independent subproblems,
e.g., extract features in images

11

Counting Words on a Single Processor
" JEE—

m (This is the “Hello World!” of Map-Reduce)

m Suppose you have 10B documents and 1 machine

m You want to count the number of appearances of each word on this
corpus

Similar ideas useful, e.g., for building Naive Bayes classifiers and
computing TF-IDF

m Code: CO“M{] i a hash .bb’e

COI A 1 AOC(AmcntS
Fo(wo/A n A
Count YWO’[J 2

©Emily Fox 2014 23

Naive Parallel Word Counting

m Simple de};[a parallelism approach:

(%]
\ Yy e e
?‘\nj (" wH
AM— o
CW"“:J) Cow*lbmf J

N

ooy |
CountTword] = Z. Count;Jard

oo b we B s Gor all weeds n 4o wealo?

m Merging hash tables: annoying, potentially not pa{ahill:)
no gain from parallelism??? have 4o Mugamw‘,‘ ally

©Emily Fox 2014 24

12

Merﬁinﬁ Hash Tables in

1
m Generate pairs (word,count) (‘UW y) (7)
m Merge counts for each word in parallel
01 Thus para'lkel merging hash tables Y 1000
!

?L“‘S‘ \ ﬂ L. - ﬂ
gisk-

— s
C,unh"ﬂ Count) /t((:c, ('aw:\\-nao
1 ("";lJt PR |
(\’(3:"‘{:0 et 4 \
\ / ﬂ‘ -~ - \\{
\ .
\,[9 '1‘ Mwop
1
Phase . ﬂ
?“’r:}\:\vu ~
§¢ .»0‘&5

©Emily Fox 2014

Counting Words in Parallel &

Parallel

which words N
Qo ko mpohine ~

. 'X - [\ I,A/:h‘mlml

send counts of
word 'uw’

to machine

NES

25

Map-Reduce Abstraction
x Map: Trensforms & 50&6‘ thmm* EKMP“ :word count

50 Data-parallel over elements, e.g., documents

+
1 Generate (key,value) pairs W\ﬁ') (JoCMW\Ln)

= ‘“value” can be anyqdata type
7
buw’ SRR
lp Akig 2xsm@lL g we)
['Ahry! |

Cor word v doc
mit (u)orJ,()

s Reduce: | Akg A“ VA‘WS" S$olioked wf
1 Aggregate values for each key A ke dnA

(4
1 Must be cgznm/uta_tiy.&assmialgoperation 7 Mﬂ“ﬂ" R
1 Data-parallel over keys
[l Generate (key,value) pairs

cedua ‘U’ , (v, 17,0,0, ,2J>
emit[Yw’,30Y)

m Map-Reduce has long history in functional programming

1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Emily Fox 2014

c=0

\
lu te (| word s counktlist f-’\‘]}

FOf PERT [Wv\.(
C+4: COuv\'Er"j

emik (wofA, ¢)

26

13

Map Code (Hadoop): Word Count
"
4 v ©

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws <stuff>
{

String line = value.toStringQ);
StringTokenizer tokemzeé_n_ev(:swwgﬂkeﬁﬁfé'r‘h{ne)s‘e(‘"3

while (tokenizer.hasMopeTokens()
xtﬂs&é{& sbje€

word.set(toke 1zer'

context.write one) [WO'A (\

©Emily Fox 2014 27

Reduce Code (Hadoop): Word Count
"

public static class Reduce xtend§ Reducer<Text, IntWritable,
Text, IntWritable> {k//-wOIK,

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IQExceptia, Inferfupteghxdeption {

int sum = 0; TLJ
for (IntWritabW®&§j/’{, 0, 6, |
sul_+= xal.getlls (

context.write(key, new IntWritable(sum));
¥ emix [wore,

©Emily Fox 2014 28

14

Map-Reduce Parallel Execution
- F
SHUFFLE Kf_auc; o)
(¥, ,%)

@ k5$k1
) (ky,v)

P (“::Vl)
o :
Moo (G5,)

©Emily Fox 2014

)

Shve

(kq / Vll) fl(J':’

/

(ke, V{\
(k‘,\u)

29

Map-Reduce — Execution Overview

|
Map Phase Shuffle Phase
/\ (k1,v4)
/ M o) “
U M2 _>§k1'vV1'; ;, 8
2 Kz Vo) =
E <%§ Lo
® N %_ 1) %'E
o Pt ek
o)) @ A % IS
m <

M1000

,\l,\
x X
3 2
<<
S
R

©Emily Fox 2014

Reduce Phase
(ky,v4)
— (ky V)

(Ky¥s)
— (kov,)

(Ke:Vs)
— (kove)

30

15

Map-Reduce — Robustness to Failures 1:
Protecting Data: Save To Disk Constantly

]
Map Phase Shuffle Phase Reduce Phase
(ky,vy) ((SAD)
—> (k,,V,)

M1 = (kyVp)

U

(k3,v3)

—> (k,,V,) \> &S

(ks,V5) /

> (Ke.V6)

M2 [(kevz)

N

Split data

machine hlk;]

e
=
<
\ 2
[=%
2
c
2
2
123
<

Big Data
N\

Z

[(SEAZI}
M1000 [(Kg.Vz+)

©Emily Fox 2014 31

Distributed File Systems
" JEE—

m Saving to disk locally is not enough =» If disk or machine fails, all data is lost

m Replicate data among multiple machines! =
Waa |, ﬁ ﬁ ﬁ Ce. ﬁ’
m Distributed File System (DFS)
Write a file from anywhere = automatically replicated wri-h.('(u.":v{ ')
Can read a file from anywhere =» read from closest copy - k:‘ 1‘ I ‘:”.-{-x}]

= If failure, try next closest copy)_’ ;\ . o 3
1 ' where it 1S i As ey,
%L{('Foo'h(t, 3 L\‘(Coo‘{’x next one L ca”“,e

8 ‘MEI'--ﬁ B

= Common implementations:
Google File System (GFS)
Hadoop File System (HDFS)

m Important practical considerations:

Write large files
= Many small files & becomes way too slow

Typically, files can’t be “modified”, just “replaced” = makes robustness much simpler
—

©Emily Fox 2014 32

16

Map-Reduce — Robustness to Failures 2:
Recovering From Failures: Read from DFS

Doy € cebter s<pcs bebore

|
o 2rS €l
[\ Map Phase Shuffle Phase Reduce Phase m :P COmcn:I‘uer.\\I)Cation
w [) > () in initial
U — : distribution &
(KynVy) s
—>(k;.,x;-) M2 _)Et“z“; ?hufﬂe pl'.]e:’se
- automatic
Done by DFS

Big Data
N\
sl data
@cLQss macl

m |[f failure, don’t
restart everything

Otherwise,
never finish

nly restart Map/
duce jobs in

33

Improving Performance: Combiners
" JEE

m Naive implementation of M-R very wasteful in communication during shuffle:

MY \)=
@ (1) . h(uw’)=7
: i,\ taneS
U fawt) | 5 7)

(' \) (uw's ')
m Combiner: Simple solution, p.erf}rg_ne_du.ceiaailly before communicating
-

for global reduce
Works because reduce is commutative-associative

©Emily Fox 2014 34

17

(A few of the) Limitations of Map-Reduce

“
0 [

E.g., reducers don't start until all M1 > EE;X;;

mappers are done U /
(Kyvq)
> (kyv2)

m “Too much” robustness M2
Writing to disk all the time

Map Phase Shuffle Phase
= 'Too much synchrony [\ P)

\

Split data
across machines

Big Data
N\

= Not all problems fit in #
Map-Reduce
E.g., you can’t communicate
between mappers

(kyvo)
= Oblivious to structure in data U oo [(bvz)
E.g., ifdatais a gﬁ@ can be
much more efficient
= For example, no need to shuffle nearly as much

v

m Nonetheless, extremely useful;

industry standard for Big Data

Though many many companies are moving

away from Map-Reduce (Hadoop)
©Emily Fox 2014

T e
[
EXS
20
o c
2=
c &
2 e
]

3
<

—>

—>

—>

35

Reduce Phase

(k)
(o)

(k3,v3)
(kgva)

(ks,Vs)
(keVe)

What you need to know about Map-Reduce

* JEE
m Distributed computing challenges are hard and annoying!

Programmability
Data distribution
Failures

High-level abstractions help a lot!

Data-parallel problems & Map-Reduce

Map:

Data-parallel transformation of data é___

= Parallel over data points

m Reduce:

Data-parallel aggregation of data
= Parallel over keys

Combiner helps reduce communication f(

Distributed execution of Map-Reduce:
Map, shuffle, reduce
Robustness to failure by writing to disk
Distributed File Systems

©Emily Fox 2014

36

18

Case Study 2: Document Retrieval

Parallel K-Means on
Map-Reduce

Machine Learning/Statistics for Big Data
CSES47/STAT548, University of Washington
Emily Fox

January 231, 2014

©Emily Fox 2014 37

Map-Reducing One lteration of

K-Means
" S

m Classify: Assign each point j&{1,...N} to nearest center:

2 argmin ||p; — x'[[3
(’(K3
*| m Recenter: w, becomes centroid of its point:

i argmin > | — %73
" jizi=i
Equivalent to u; < average of its points!

= Map: (za ?o\ra‘lzlz classify phose , el e
ink o cwen LM) > 0!
Cor tad, daka print : given 4, b
emit (gg}xﬁ)

m Reduce: Rgcentes pl«AS(

fveraol - ouer all VO\"WS w class 4 S s

ZI=1

ooooooooooooo

19

Classification Step as Map
*
m Classify: Assign each point j&{1,...m} to nearest center:
72! argmin||p; — x|[3

= Map g ((m, M1, x))
P wgmm Ltz x? “
emik (?J/w)
«tJ:I
eq emie(2, (1,0,0,,7,2])
7

) YR kv

Recenter Step as Reduce
* JEEE

m Recenter: y; becomes centroid of its point:

DY argmin 37— |3
jizi=i . 4
a.SSl né
! ath :
O Equivalent to y; < average of its points! J X0 cjb\“ -

m Reduce: Relmcc (il lisk.x - [:x‘/x2 J)

cov.!\{'.f—o
Sum=0

Cor x in list X

=X V.

Count 4= | L/-
emik (\, s“m/cour\{-}

©Emily Fox 2014

oF P

a0

20

Some Practical Considerations
* JE
m K-Means needs an iterative version of Map-

Reduce
Not standard formulation

m Mapper needs to get data point and all centers
A lot of data!l
Better implementation: mapper gets many data points
——

éac"\ Cﬁ-“ Yo MAP

. 'y
processes muH(Plc ¥ 's .. fagter

What you need to know about

. Parallel K-Means on Map-Reduce

m Map: classification step; data parallel over data
point

m Reduce: recompute means; data parallel over
centers

21

