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Problem 1: Complexity of Update
B} Rglﬁﬁ for Logistic Regression

/N; ~aSC.
m Logistic regression update: s'wd’" y h

wgtﬂ) — wgt) + M {—Awgt) + :Bgt) [y® — Py =1]x, W(t))]}

m Complexity of updates:
Constant in number of data points \/

In number of features?  ()(.
= Problem both in terms of computational complexity and sample complexity

Whay I we 1/\&\)( R Leptares, 77
m What can we with very high dimensional feature spaces?

Kernels not always appropriate, or scalable é—~— || l(u"l,\ -\r‘.c(: )
What else?
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Problem 2: Unknown Number of Features

e
"
m For example, hag-of-words features for text data: \M“NL’
“Mary had a little lamb, little lamb...”
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OV f
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Wady \l\ﬂA (] ‘\"k’(\e' "dl"b'

= What's the dimensionality of x? 9122 of VOCW‘NY f’"l”“""<

m What if we see new word that was not in our vocabulary?
Obamacare

Theoretically, just keep going in your learning, and initialize Wop,macare = 0
In practice, need to re-allocate memory, fix indices,... A big problem for Big Data
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Bloom Filter: Multiple Hash Tables
" JEE

m Single hash table -> Many false positives

m Multiple hash tables with independent hash functions
Apply hy(i),..., i), set all bi

k (;d“"):‘TW \,\I(‘O\)N"NP"L, ):#
\nﬁ‘““‘\,'\f'qm |, (‘0bamacore ')=9

m Query Q(i)? fond’ + \Obomscare”
WAy k(e b ia Lk et by
QLY = very grol:;.(o(y yes

tye Q)= no
m Significantly decrease probability of false positives
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Count-Min Sketch: general case
* JE—

{

= Keep nt pAatrix pl\ In( ”""{)
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m p hash functions: \\,\l('mr.,') \,\ ( Pbsmecrry

1 Just like in Bloom Filter, decrease errors with multiple hashes ’wP"k

[ Every time see string i N \' / J‘l‘ \nosl. Cen
Vje{l,...,p}: Count[j, hj(i)] < Count|j, h;(i)] +1
———
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Finally, Sketching for LR
" S
wgtﬂ) — w(t) + ¢ {—)\wgt) + azgt) [y(t) —P(Y = 1|X(t)7 W(t))]}

m Never need to know size of vocabulary!
m At every iteration, update Count-Mln matrix:

Vl k Coun{f‘},l(] n4 )COMH"'C‘)[”]

4] J
VY, #0
' Coun%C),‘r\ (43] sz i const M oo
m Making a predlctlo‘r)1 ¥7"1(7 ’P{Hj

Remember one s of W te) Ml-'%);“" Covnt |:), LJ/—I)]

'1 ‘AL fn.s edia ‘
et \og ot\ds- * 7_ m ‘3' "cOur\kC) L(,‘)jxl)

m Scales to huge problems, great practlcal implications...
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Hash Kernels
= JEE

m  Count-Min sketch not designed for negative updates L\‘\V—
m Biased estimates of dot products

“<h Ve s . . é "‘J\
m  Hash Kernels: Very simple, but powerful idea to remove bias (N‘
m  Pick 2 hash functions:

O h: Justlike in Count-Min hashing L‘ X —5 ﬂ Ty f

1 € : Sign hash function é X 4 4 “|5

= Removes the bias found in Count-Min hashing ($ee homework)

m Define a “kernel’, a pro&gtlon ¢ forx“?r ” c\w\f-/ﬂ- of W\j\’ q

o bin (J) ()\ s e
C}"‘): T (1 (G)!

L
lt)«(ﬂ ZWX fdl,;:t
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Hash Kernels Preserve Dot Products
" S

Z £(5)x;

jeh(j)=i
m Hash kernels provide unbiased estimate of dot-products!

Ekt{(?(Y)‘(ﬁ(Y)] - X.y ‘[),C [m/ [omework,

m Variance decreases as O(1/m) ¢«— gkis bettar w/  anoce
A(MS
m Choosing m? For >0, if e\
ﬁ . -
m=0 (%) l"f) n date SiZe
1 Under certain conditions...
[ Then, with probability at least 1-&:

(1= e)llx = XI5 < [l(x) — ¢(x)])3 < (1 +¢)
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Learning With Hash Kernels
" S

m Given hash kernel of dimension m, specified by h and §
Learn m dimensional weight vector
m Observe data point x
Dimension does not need to be specified a priori!
m  Compute ¢(x):
Initialize ¢(x)
For non-zero entries j of x;:

m Use normal update as if observation were ¢(x), e.g., for LR using SGD:
w™ e wf o { Aol 4 oy - POV = 1o(x ), w )] |
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Interesting Application of Hash

_ _Kernels: Multi-Task Learning
N
m  Personalized click estimation for many users:
One global click prediction vector w:

= But...
A click prediction vector w,, per user u:

= But...

m  Multi-task learning: Simultaneously solve multiple learning related problems:
Use information from one learning problem to inform the others

= In our simple example, learn both a global w and one w,, per user:
Prediction for user u:

If we know little about user u:

After a lot of data from user u:
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Problems with Simple Multi-Task Learning
“

m Dealing with new user is annoying, just like dealing with
new words in vocabulary

m Dimensionality of joint parameter space is HUGE, e.qg.
personalized email spam classification from Weinberger
et al.:

3.2M emails

40M unique tokens in vocabulary

430K users

16T parameters needed for personalized classification!
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Hash Kernels for Multi-Task Learning
" JEE——

m  Simple, pretty solution with hash kernels:

Very multi-task learning as (sparse) learning problem with (huge) joint data point z for
point x and user u:

m  Estimating click probability as desired:

m  Address huge dimensionality, new words, and new users using hash kernels:

Desired effect achieved if j includes both
= just word (for global w)
= word,user (for personalized w,)
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Simple Trick for Forming Projection ¢(x,u)
“

m Observe data point x for user u
Dimension does not need to be specified a priori and user can be unknown!

m Compute ¢(x,u):
Initialize ¢(x,u)
For non-zero entries j of x;:
» E.g., j='Obamacare’
= Need two contributions to ¢:
Global contribution
Personalized Contribution

= Simply:

m Learn as usual using ¢(x,u) instead of ¢(x) in update function
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Results from Weinberger et al. on

_ SEam Classification: Effect of m
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Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error €4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%.
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Results from Weinberger et al. on Spam

Classification: lllustrating Multi-Task Effect
" JEE

14
= 1.2 (0]
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Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.
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What you need to know
* JEE—

Hash functions
m Bloom filter
Test membership with some false positives, but very small number of bits per element
m  Count-Min sketch
Positive counts: upper bound with nice rates of convergence
General case
m Application to logistic regression
m Hash kernels:
Sparse representation for feature vectors
Very simple, use two hash function (Can use one hash function...take least significant bit to define §)
Quickly generate projection ¢(x)
Learn in projected space
m  Multi-task learning:
Solve many related learning problems simultaneously
Very easy to implement with hash kernels
Significantly improve accuracy in some problems (it there is enough data from individual users)
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Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents

Machine Learning for Big Data
CSES47/STAT548, University of Washington
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January 16, 2014
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Document Retrieval
= JEE
m Goal: Retrieve documents of interest

m Challenges:
Tons of articles out there
How should we measure similarity?

ooooooooooooo




Task 1: Find Similar Documents
= JEE
m To begin...

O Input: Query article
1 Output: Set of k similar articles
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Document Representation
* JEEE——
m Bag of words model

E
ll

Irl
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1-Nearest Neighbor
" JEEE

m Articles
m Query:

m 1-NN
Goal:

Formulation:
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kK-Nearest Neighbor
" JEE—

m Articles X = {z!,...,2"}, z'eR?
m Query: z € R?

m k-NN
Goal:

Formulation:

ooooooooooooo
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Distance Metrics — Euclidean
= JEE

d
d(u,v) = Z(uz —v;)?

=1

d
Or, more generally, d(u,v) = | o?(u; —v;)?
=1

Equivalently,
2
d(u,v) = /(u=0)S(u—v) G
2 .
where X=1. . .
Other Metrics... 0o 0 ... oF

m Mahalanobis, Rank-based, Correlation-based, cosine similarity...
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Notable Distance Metrics (and their level sets)
* JEE—

L, norm (absolute)

|

L1 (max) norm

Mahalanobis
(Z is general sym pos def matrix,
on previous slide = diagonal)
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Euclidean Distance + Document Retrieval
=

m Recall distance metric

d

d(u,v) = Z(uz — v;)?

i=1
m What if each document were (¢ times longer?
Scale word count vectors

What happens to measure of similarity?

m Good to normalize vectors
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Issues with Document Representation
" JEE

m Words counts are bad for standard similarity metrics

m Term Frequency — Inverse Document Frequency (tf-idf)
Increase importance of rare words
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TF-IDF
“

m  Term frequency:

t(t, d) =

Could also use {0,1},1+log f(¢,d), ...
m Inverse document frequency:

idf(t, D) =
w thidf:

tAdE(t, d, D) =

High for document d with high frequency of term t (high “term frequency”) and few
documents containing term t in the corpus (high “inverse doc frequency”)
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Issues with Search Techniques
" JEE—
m Naive approach:
Brute force search

Given a query point X ) )
Scan through each point z" s .
O(N) distance computations .

per 1-NN query!
O(Nlogk) per k-NN query!

33 Distance Computations

m What if N is huge???
(and many queries)
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KD-Trees
= JEE

m Smarter approach: kd-trees

Structured organization of *e el
documents R ..
m Recursively partitions points into axis oo e ¢
aligned boxes. 4 . * *
Enables more efficient pruning of Tl
search space e e *
= Examine nearby points first.
= Ignore any points that are further than 0
the nearest point found so far. / \\
m kd-trees work “well” in “low- 0 5
medium” dimensions d/ \b o/ \O
We'll get back to this... SHELHLEY &Yy
S8y &Y
©Emily Fox 2014 29
" JE——
e®e ° ° Pt X Y
oo 1 | 0.00 | 0.00
. . - 2 |1.00 | 4.31
oo o * 3 [ 0413 2585
[ ] [ ] [ ]
[ ] ®
[ ]
(]
® * : b * [ ]

m Start with a list of d-dimensional points.
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KD-Tree Construction

NO /@\YES

° o. Pt X Y Pt X Y
° 1 0.00 | 0.00 2 [1.00|4.31
3 |013|2.85
(]
[ ]
[ ]
m Split the points into 2 groups by:
Choosing dimension d; and value V (methods to be discussed...)
Separating the points into lej >V and xflj<= V.
KD-Tree Construction
* JEE
| 3
*oe NO \YES
oo Pt | X | Y Pt | X | Y
o 1 [0.00|0.00 2 |1.00)4.31
3 (013|285
(]
[ ]

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...

©Emily Fox 2014
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KD-Tree Construction

()

NO \YES
Pt | X | Y
2 [1.00]4.31
NO YE
Pt X Y Pt X Y
3 013|285 1 0.00 | 0.00

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...
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KD-Tree Construction

ey

/\

kY

O

o’\bd’\b

m Continue splitting points in each set

creates a binary tree structure

m Each leaf node contains a list of points

©Emily Fox 2014
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KD-Tree Construction

i A

o o ° (5/\6)(5/\@ CS/\C)

4

m Keep one additional piece of information at each node:
The (tight) bounds of the points at or below this node.

KD-Tree Construction
* JEE——
Use heuristics to make splitting decisions:

m Which dimension do we split along?
m Which value do we split at?

m When do we stop?

36
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Many heuristics...
" I

R %
ﬁ;

™ =N
7 | B
o ° 4]
8 E 8-

[ 4. )
median heuristic center-of-range heuristic
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O

e A Ay
. e oiRe o/d/\b\b d,c{\b\b o] d’\b\b

m Traverse the tree looking for the nearest neighbor of the
query point.

ooooooooooooo

19



Nearest Neighbor with KD Trees

S le Q.

A .:.. / 0
‘BRI

o d L] AN G2

m Examine nearby points first:
Explore branch of tree closest to the query point first.

©Emily Fox 2014

o’ ) ) é/\b ’/ e
. . :.: o R c{d/\b\b d,c{\b\b o d’\b\b

m Examine nearby points first:
Explore branch of tree closest to the query point first.

ooooooooooooo
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Nearest Neighbor with KD Trees

m When we reach a leaf node:

N\
VANAY

ARe CS,cs’\b\b d,o’\b\b |§‘] \b

Compute the distance to each point in the node.

©Emily Fox

2014

m When we reach a leaf node:

N

O

<N /\

SiRe 6@’\6\@ d’é/\b\b |§‘| \b

Compute the distance to each point in the node.

@@@@@@@@@

2014
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Nearest Neighbor with KD Trees

N e 2N
- . . o/\b /\

LT o"oo,cs’\b\od,o’\b‘b o’j,b\t

m Then backtrack and try the other branch at each node
visited
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Nearest Neighbor with KD Trees
" JEE—

o VN
SR N /\
. . :.: o i) o/d/\b\b d,c{\b\b of |§‘]\b\b

m Each time a new closest node is found, update the
distance bound

ooooooooooooo
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Nearest Neighbor with KD Trees

A N\,
S S AN

BT o’\bo,cs’\b\bdp’\b\b &

S [o]

m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD Trees

T )

g RYE

P

bED

AN

O,

S
iRe

m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor

ooooooooooooo
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Nearest Neighbor with KD Trees

m Using the distance bound and bounding box of each node:
1 Prune parts of the tree that could NOT include the nearest neighbor
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Complexity

m For (nearly) balanced, binary trees...

m Construction
1 Size:
[ Depth:
1 Median + send points left right:
1 Construction time:
m 1-NN query
01 Traverse down tree to starting point:
1 Maximum backtrack and traverse:
1 Complexity range:

m Under some assumptions on distribution of points, we get
O(logN) but exponential in d (see citations in reading)
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Complexity

©Emily Fox 2014

Complexity for N Queries
" JEE
m Ask for nearest neighbor to each document

m Brute force 1-NN:

m kd-trees:

ooooooooooooo

25



Inspections vs. N and d

©Emily Fox 2014

S R PN - N\
Lo L] AR E

Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

Complexity is:

ooooooooooooo
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Approximate K-NN with KD Trees

()7 N
d/g A\

R AP \o\bcs’o/\o\b O/s/b\c

Before: Prune when distance to bounding box >
Now: Prune when distance to bounding box >
m  Will prune more than allowed, but can guarantee that if we return a neighbor
at distance 77, then there is no neighbor closer than T/a.
In practice this bound is loose...Can be closer to optimal.
Saves lots of search time at little cost in quality of nearest neighbor.
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Wrapping Up — Important Points
" S

kd-trees

m Tons of variants
On construction of trees (heuristics for splitting, stopping, representing branches...)
Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
m Distance metric and data representation are crucial to answer returned

For both...

m High dimensional spaces are hard!
Number of kd-tree searches can be exponential in dimension
= Rule of thumb... N >>29... Typically useless.

Distances are sensitive to irrelevant features
= Most dimensions are just noise - Everything equidistant (i.e., everything is far away)
= Need technique to learn what features are important for your task
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" JEE

m Document retrieval task
Document representation (bag of words)
tf-idf

m Nearest neighbor search
Formulation
Different distance metrics and sensitivity to choice
Challenges with large N

m kd-trees for nearest neighbor search
Construction of tree
NN search algorithm using tree

Complexity of construction and query
Challenges with large d
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