
1

1

Tackling an Unknown
Number of Features with
Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Emily Fox
January 16th, 2014

©Emily Fox 2014

Case Study 1: Estimating Click Probabilities

Problem 1: Complexity of Update
Rules for Logistic Regression

©Emily Fox 2014 2

n  Logistic regression update:

n  Complexity of updates:
¨  Constant in number of data points
¨  In number of features?

n  Problem both in terms of computational complexity and sample complexity

n  What can we with very high dimensional feature spaces?
¨  Kernels not always appropriate, or scalable
¨  What else?

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

2

Problem 2: Unknown Number of Features

n  For example, bag-of-words features for text data:
¨  “Mary had a little lamb, little lamb…”

n  What’s the dimensionality of x?
n  What if we see new word that was not in our vocabulary?

¨  Obamacare

¨  Theoretically, just keep going in your learning, and initialize wObamacare = 0
¨  In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

©Emily Fox 2014 3

Bloom Filter: Multiple Hash Tables

n  Single hash table -> Many false positives

n  Multiple hash tables with independent hash functions
¨  Apply h1(i),…, hd(i), set all bits to 1

n  Query Q(i)?

n  Significantly decrease probability of false positives
©Emily Fox 2014 4

3

Count-Min Sketch: general case
n  Keep p by m Count matrix

n  p hash functions:
¨  Just like in Bloom Filter, decrease errors with multiple hashes
¨  Every time see string i:

©Emily Fox 2014 5

8j 2 {1, . . . , p} : Count[j, hj(i)] Count[j, hj(i)] + 1

Finally, Sketching for LR

n  Never need to know size of vocabulary!
n  At every iteration, update Count-Min matrix:

n  Making a prediction:

n  Scales to huge problems, great practical implications…
©Emily Fox 2014 6

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

4

Hash Kernels

n  Count-Min sketch not designed for negative updates
n  Biased estimates of dot products

n  Hash Kernels: Very simple, but powerful idea to remove bias
n  Pick 2 hash functions:

¨  h : Just like in Count-Min hashing

¨  ξ : Sign hash function
n  Removes the bias found in Count-Min hashing (see homework)

n  Define a “kernel”, a projection ϕ for x:

©Emily Fox 2014 7

Hash Kernels Preserve Dot Products

n  Hash kernels provide unbiased estimate of dot-products!

n  Variance decreases as O(1/m)

n  Choosing m? For ε>0, if

¨  Under certain conditions…
¨  Then, with probability at least 1-δ:

©Emily Fox 2014 8

(1� ✏)||x� x

0||22  ||�(x)� �(x0)||22  (1 + ✏)||x� x

0||22

m = O

log

N
�

✏2

!

�i(x) =
X

j:h(j)=i

⇠(j)xj

5

Learning With Hash Kernels
n  Given hash kernel of dimension m, specified by h and ξ

¨  Learn m dimensional weight vector
n  Observe data point x

¨  Dimension does not need to be specified a priori!
n  Compute ϕ(x):

¨  Initialize ϕ(x)
¨  For non-zero entries j of xj:

n  Use normal update as if observation were ϕ(x), e.g., for LR using SGD:

©Emily Fox 2014 9

w(t+1)
i w(t)

i + ⌘t
n

��w(t)
i + �i(x

(t))[y(t) � P (Y = 1|�(x(t)),w(t))]
o

Interesting Application of Hash
Kernels: Multi-Task Learning

n  Personalized click estimation for many users:
¨  One global click prediction vector w:

n  But…
¨  A click prediction vector wu per user u:

n  But…

n  Multi-task learning: Simultaneously solve multiple learning related problems:
¨  Use information from one learning problem to inform the others

n  In our simple example, learn both a global w and one wu per user:
¨  Prediction for user u:

¨  If we know little about user u:

¨  After a lot of data from user u:

©Emily Fox 2014 10

6

Problems with Simple Multi-Task Learning

n  Dealing with new user is annoying, just like dealing with
new words in vocabulary

n  Dimensionality of joint parameter space is HUGE, e.g.
personalized email spam classification from Weinberger
et al.:
¨  3.2M emails
¨  40M unique tokens in vocabulary
¨  430K users
¨  16T parameters needed for personalized classification!

©Emily Fox 2014 11

Hash Kernels for Multi-Task Learning

n  Simple, pretty solution with hash kernels:
¨  Very multi-task learning as (sparse) learning problem with (huge) joint data point z for

point x and user u:

n  Estimating click probability as desired:

n  Address huge dimensionality, new words, and new users using hash kernels:

¨  Desired effect achieved if j includes both
n  just word (for global w)
n  word,user (for personalized wu)

©Emily Fox 2014 12

7

Simple Trick for Forming Projection ϕ(x,u)

n  Observe data point x for user u
¨  Dimension does not need to be specified a priori and user can be unknown!

n  Compute ϕ(x,u):
¨  Initialize ϕ(x,u)
¨  For non-zero entries j of xj:

n  E.g., j=‘Obamacare’
n  Need two contributions to ϕ:

¨  Global contribution
¨  Personalized Contribution

n  Simply:

n  Learn as usual using ϕ(x,u) instead of ϕ(x) in update function

©Emily Fox 2014 13

Results from Weinberger et al. on
Spam Classification: Effect of m

©Emily Fox 2014 14

8

Results from Weinberger et al. on Spam
Classification: Illustrating Multi-Task Effect

©Emily Fox 2014 15

What you need to know
n  Hash functions
n  Bloom filter

¨  Test membership with some false positives, but very small number of bits per element

n  Count-Min sketch
¨  Positive counts: upper bound with nice rates of convergence
¨  General case

n  Application to logistic regression
n  Hash kernels:

¨  Sparse representation for feature vectors
¨  Very simple, use two hash function (Can use one hash function…take least significant bit to define ξ)

¨  Quickly generate projection ϕ(x)
¨  Learn in projected space

n  Multi-task learning:
¨  Solve many related learning problems simultaneously
¨  Very easy to implement with hash kernels
¨  Significantly improve accuracy in some problems (if there is enough data from individual users)

©Emily Fox 2014 16

9

17

Task Description:
Finding Similar Documents

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Emily Fox
January 16th, 2014

©Emily Fox 2014

Case Study 2: Document Retrieval

Document Retrieval

©Emily Fox 2014 18

n  Goal: Retrieve documents of interest
n  Challenges:

¨ Tons of articles out there
¨ How should we measure similarity?

10

Task 1: Find Similar Documents

©Emily Fox 2014 19

n  To begin…
¨  Input: Query article
¨ Output: Set of k similar articles

Document Representation

©Emily Fox 2014 20

n  Bag of words model

11

1-Nearest Neighbor

©Emily Fox 2014 21

n  Articles

n  Query:

n  1-NN
¨  Goal:

¨  Formulation:

k-Nearest Neighbor

©Emily Fox 2014 22

n  Articles

n  Query:

n  k-NN
¨  Goal:

¨  Formulation:

X = {x1
, . . . , x

N}, x

i 2 Rd

x 2 Rd

12

Distance Metrics – Euclidean

©Emily Fox 2014 23 23

Other Metrics…
n  Mahalanobis, Rank-based, Correlation-based, cosine similarity…

where

Or, more generally,

⌃ =

2

6664

�2
1 0 · · · 0
0 �2

2 · · · 0
...

... · · ·
...

0 0 . . . �2
d

3

7775

d(u, v) =
p

(u� v)0⌃(u� v)

d(u, v) =

vuut
dX

i=1

�2
i (ui � vi)2

d(u, v) =

vuut
dX

i=1

(ui � vi)2

Equivalently,

©Emily Fox 2014 24

Notable Distance Metrics (and their level sets)

L1 norm (absolute)

L1 (max) norm

Scaled Euclidian (L2)

Mahalanobis
(Σ is general sym pos def matrix,

on previous slide = diagonal)

13

n  Recall distance metric

n  What if each document were times longer?
¨  Scale word count vectors

¨  What happens to measure of similarity?

n  Good to normalize vectors

Euclidean Distance + Document Retrieval

©Emily Fox 2014 25 25

d(u, v) =

vuut
dX

i=1

(ui � vi)2

↵

Issues with Document Representation

©Emily Fox 2014 26

n  Words counts are bad for standard similarity metrics

n  Term Frequency – Inverse Document Frequency (tf-idf)

¨  Increase importance of rare words

14

TF-IDF

©Emily Fox 2014 27

n  Term frequency:

¨  Could also use
n  Inverse document frequency:

n  tf-idf:

¨  High for document d with high frequency of term t (high “term frequency”) and few
documents containing term t in the corpus (high “inverse doc frequency”)

tf(t, d) =

{0, 1}, 1 + log f(t, d), . . .

idf(t,D) =

tfidf(t, d,D) =

n  Naïve approach:
Brute force search
¨  Given a query point
¨  Scan through each point
¨  O(N) distance computations

per 1-NN query!
¨  O(Nlogk) per k-NN query!

n  What if N is huge???
(and many queries)

Issues with Search Techniques

©Emily Fox 2014 28

33 Distance Computations	

x

x

i

15

n  Smarter approach: kd-trees
¨  Structured organization of

documents
n  Recursively partitions points into axis

aligned boxes.

¨  Enables more efficient pruning of
search space

n  Examine nearby points first.
n  Ignore any points that are further than

the nearest point found so far.

n  kd-trees work “well” in “low-
medium” dimensions
¨  We’ll get back to this…

KD-Trees

©Emily Fox 2014 29

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

n  Start with a list of d-dimensional points.

30 ©Emily Fox 2014

16

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5	

Pt X Y
2 1.00 4.31
… … …

YES	

NO	

n  Split the points into 2 groups by:
¨  Choosing dimension dj and value V (methods to be discussed…)

¨  Separating the points into > V and <= V.

31 ©Emily Fox 2014

x

i
dj

x

i
dj

KD-Tree Construction

X>.5	

Pt X Y
2 1.00 4.31
… … …

YES	

NO	

n  Consider each group separately and possibly split again
(along same/different dimension).
¨  Stopping criterion to be discussed…

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

32 ©Emily Fox 2014

17

KD-Tree Construction

Pt X Y
3 0.13 2.85
… … …

X>.5	

Pt X Y
2 1.00 4.31
… … …

YES	

NO	

Pt X Y
1 0.00 0.00
… … …

Y>.1	

NO	

 YES	

n  Consider each group separately and possibly split again
(along same/different dimension).
¨  Stopping criterion to be discussed…

33 ©Emily Fox 2014

KD-Tree Construction

n  Continue splitting points in each set
¨  creates a binary tree structure

n  Each leaf node contains a list of points

34 ©Emily Fox 2014

18

KD-Tree Construction

n  Keep one additional piece of information at each node:
¨  The (tight) bounds of the points at or below this node.

35 ©Emily Fox 2014

KD-Tree Construction

Use heuristics to make splitting decisions:

n  Which dimension do we split along?

n  Which value do we split at?

n  When do we stop?

36 ©Emily Fox 2014

19

Many heuristics…

37

median heuristic center-of-range heuristic

©Emily Fox 2014

Nearest Neighbor with KD Trees

38

n  Traverse the tree looking for the nearest neighbor of the
query point.

©Emily Fox 2014

20

Nearest Neighbor with KD Trees

39

n  Examine nearby points first:
¨  Explore branch of tree closest to the query point first.

©Emily Fox 2014

Nearest Neighbor with KD Trees

40

n  Examine nearby points first:
¨  Explore branch of tree closest to the query point first.

©Emily Fox 2014

21

Nearest Neighbor with KD Trees

41

n  When we reach a leaf node:
¨  Compute the distance to each point in the node.

©Emily Fox 2014

Nearest Neighbor with KD Trees

42

n  When we reach a leaf node:
¨  Compute the distance to each point in the node.

©Emily Fox 2014

22

Nearest Neighbor with KD Trees

43

n  Then backtrack and try the other branch at each node
visited

©Emily Fox 2014

Nearest Neighbor with KD Trees

44

n  Each time a new closest node is found, update the
distance bound

©Emily Fox 2014

23

Nearest Neighbor with KD Trees

45

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014

Nearest Neighbor with KD Trees

46

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014

24

Nearest Neighbor with KD Trees

47

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014

n  For (nearly) balanced, binary trees...
n  Construction

¨  Size:
¨  Depth:
¨  Median + send points left right:
¨  Construction time:

n  1-NN query
¨  Traverse down tree to starting point:
¨  Maximum backtrack and traverse:
¨  Complexity range:

n  Under some assumptions on distribution of points, we get
O(logN) but exponential in d (see citations in reading)

48

Complexity

©Emily Fox 2014

25

49

Complexity

©Emily Fox 2014

n  Ask for nearest neighbor to each document

n  Brute force 1-NN:

n  kd-trees:

50

Complexity for N Queries

©Emily Fox 2014

26

51

Inspections vs. N and d

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

©Emily Fox 2014

K-NN with KD Trees

52

n  Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

n  Complexity is:

©Emily Fox 2014

27

53 ©Emily Fox 2014

Approximate K-NN with KD Trees

n  Before: Prune when distance to bounding box >
n  Now: Prune when distance to bounding box >
n  Will prune more than allowed, but can guarantee that if we return a neighbor

at distance , then there is no neighbor closer than .
n  In practice this bound is loose…Can be closer to optimal.
n  Saves lots of search time at little cost in quality of nearest neighbor.

r/↵r

Wrapping Up – Important Points

54

kd-trees
n  Tons of variants

¨  On construction of trees (heuristics for splitting, stopping, representing branches…)
¨  Other representational data structures for fast NN search (e.g., ball trees,…)

Nearest Neighbor Search
n  Distance metric and data representation are crucial to answer returned

For both…
n  High dimensional spaces are hard!

¨  Number of kd-tree searches can be exponential in dimension
n  Rule of thumb… N >> 2d… Typically useless.

¨  Distances are sensitive to irrelevant features
n  Most dimensions are just noise à Everything equidistant (i.e., everything is far away)
n  Need technique to learn what features are important for your task

©Emily Fox 2014

28

What you need to know

n  Document retrieval task
¨  Document representation (bag of words)
¨  tf-idf

n  Nearest neighbor search
¨  Formulation
¨  Different distance metrics and sensitivity to choice
¨  Challenges with large N

n  kd-trees for nearest neighbor search

¨  Construction of tree
¨  NN search algorithm using tree
¨  Complexity of construction and query
¨  Challenges with large d

©Emily Fox 2014 55

©Emily Fox 2014 56

Acknowledgment

n  This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
¨ http://www.cs.cmu.edu/~awm/tutorials

n  In particular, see:
¨ http://grist.caltech.edu/sc4devo/.../files/

sc4devo_scalable_datamining.ppt

