

Machine Learning for Big Data CSE547/STAT548, University of Washington **Emily Fox** January 16th, 2014

©Emily Fox 2014

Problem 1: Complexity of Update Rules for Logistic Regression skoch grad asc.

Logistic regression update:

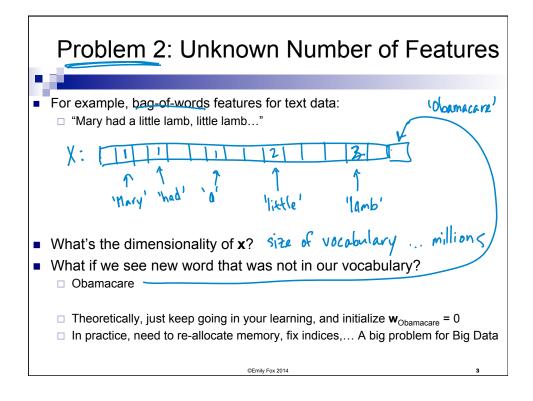
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

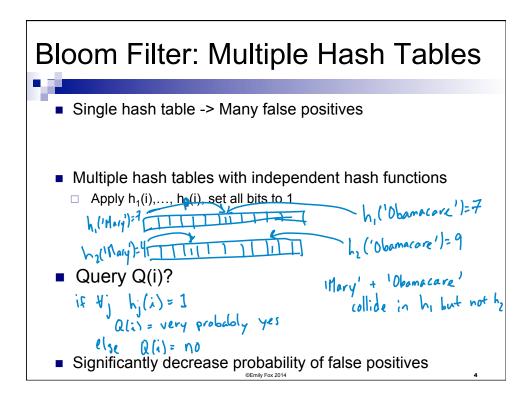
- Complexity of updates:
 - □ Constant in number of data points ✓

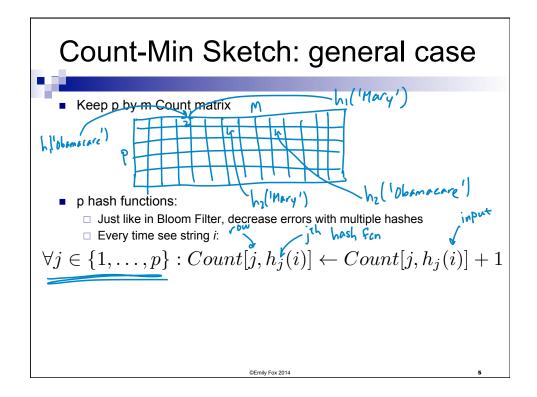
What if we have 1B features??

- What can we with very high dimensional feature spaces?

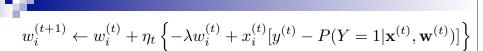
■ What else?







Finally, Sketching for LR



- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

$$\forall j, k \in Count[j, k] = (1-\eta_1 \lambda) count[j, k]$$

$$\forall x_i^{(t)} \neq 0$$

$$\forall j \quad Count[j, h_j(i)] + = x_i^{(t)} \cdot const$$

$$\forall n_1(y^{(t)} - n_1(y^{(t)}) \cdot const$$

$$\forall n_2(y^{(t)} - n_2(y^{(t)}) \cdot const$$

$$\forall n_3(y^{(t)} - n_3(y^{(t)}) \cdot const$$

$$\forall n_4(y^{(t)} - n_3(y^{(t)}) \cdot const$$

Making a prediction:

Make pred:
- log odds = Wo + Z median count (j, hj/i)]xi()

Scales to huge problems, great practical implications...

Hash Kernels Preserve Dot Products

$$\phi_i(\mathbf{x}) = \sum_{j:h(j)=i} \xi(j)\mathbf{x}_j$$

Hash kernels provide unbiased estimate of dot-products!

$$E_{h,q}[\phi(x)\cdot\phi(y)] = X\cdot y$$
 Pf: by homework

- Variance decreases as O(1/m) ← gets Letter w/ more dims
- Choosing m? For ϵ >0, if $m = \mathcal{O}\left(\frac{\log \frac{N}{\delta}}{\epsilon^2}\right)$ log in data size
 - □ Under certain conditions...
 - □ Then, with probability at least 1-δ:

$$(1-\epsilon)||\mathbf{x}-\mathbf{x}'||_2^2 \leq ||\phi(\mathbf{x})-\phi(\mathbf{x}')||_2^2 \leq (1+\epsilon)||\mathbf{x}-\mathbf{x}'||_2^2$$

Learning With Hash Kernels

- Given hash kernel of dimension m, specified by h and ξ
 - □ Learn *m* dimensional weight vector
- Observe data point x
 - □ Dimension does not need to be specified a priori!
- Compute φ(x):
 - □ Initialize $\phi(\mathbf{x})$
 - \Box For non-zero entries j of \mathbf{x}_i :
- Use normal update as if observation were $\phi(\mathbf{x})$, e.g., for LR using SGD:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(\mathbf{x}^{(t)}) [y^{(t)} - P(Y = 1 | \phi(\mathbf{x}^{(t)}), \mathbf{w}^{(t)})] \right\}$$

©Emily Fox 2014

.

Interesting Application of Hash Kernels: Multi-Task Learning

- Personalized click estimation for many users:
 - □ One global click prediction vector w:
 - But
 - □ A click prediction vector w_u per user u:
 - But...
- Multi-task learning: Simultaneously solve multiple learning related problems:
 - $\hfill \square$ Use information from one learning problem to inform the others
- In our simple example, learn both a global **w** and one **w**_u per user:
 - □ Prediction for user *u*:
 - ☐ If we know little about user u:
 - □ After a lot of data from user u

©Emily Fox 2014

Problems with Simple Multi-Task Learning

- Dealing with new user is annoying, just like dealing with new words in vocabulary
- Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 - □ 3.2M emails
 - □ 40M unique tokens in vocabulary
 - □ 430K users
 - □ 16T parameters needed for personalized classification!

©Emily Fox 2014

11

Hash Kernels for Multi-Task Learning

- Simple, pretty solution with hash kernels:
 - Very multi-task learning as (sparse) learning problem with (huge) joint data point z for point x and user u:
- Estimating click probability as desired:
- Address huge dimensionality, new words, and new users using hash kernels:
 - □ Desired effect achieved if j includes both
 - just word (for global w)
 - word,user (for personalized w_u)

©Emily Fox 2014

..

Simple Trick for Forming Projection $\phi(\mathbf{x}, u)$

- - Observe data point x for user u
 - □ Dimension does not need to be specified a priori and user can be unknown!
 - Compute $\phi(\mathbf{x}, u)$:
 - □ Initialize $\phi(\mathbf{x}, u)$
 - □ For non-zero entries j of \mathbf{x}_i :
 - E.g., j='Obamacare'
 - Need two contributions to φ:
 - □ Global contribution
 - □ Personalized Contribution
 - Simply:
- Learn as usual using $\phi(\mathbf{x}, u)$ instead of $\phi(\mathbf{x})$ in update function

©Emily Fox 2014

13

Results from Weinberger et al. on Spam Classification: Effect of *m*

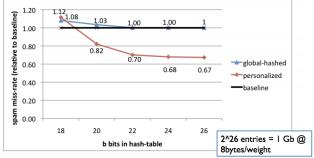
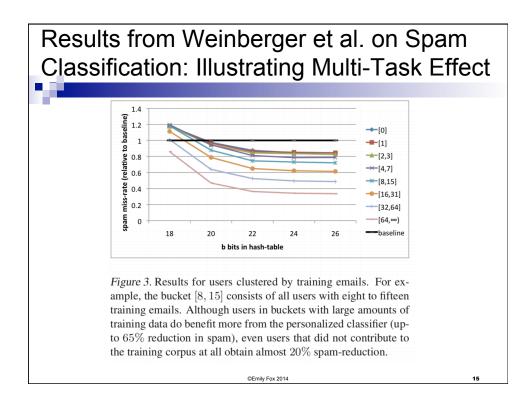


Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.

•

Emily Fox 2014



What you need to know

- Hash functions
- Bloom filter
 - ☐ Test membership with some false positives, but very small number of bits per element
- Count-Min sketch
 - □ Positive counts: upper bound with nice rates of convergence
 - □ General case
- Application to logistic regression
- Hash kernels:
 - $\hfill \square$ Sparse representation for feature vectors
 - $\begin{tabular}{ll} \hline & Very \ simple, \ use \ two \ hash \ function \ (Can \ use \ one \ hash \ function... take \ least \ significant \ bit \ to \ define \ \xi) \\ \hline \end{tabular}$
 - \Box Quickly generate projection $\phi(\mathbf{x})$
 - □ Learn in projected space
- Multi-task learning:
 - □ Solve many related learning problems simultaneously
 - Very easy to implement with hash kernels
 - ☐ Significantly improve accuracy in some problems (if there is enough data from individual users)

©Emily Fox 2014

Case Study 2: Document Retrieval

Task Description: Finding Similar Documents

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16th, 2014

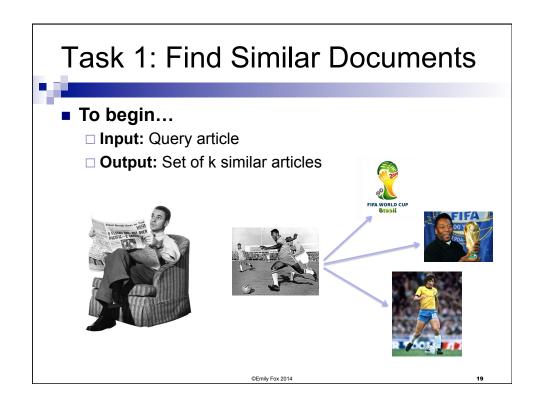
©Emily Fox 2014

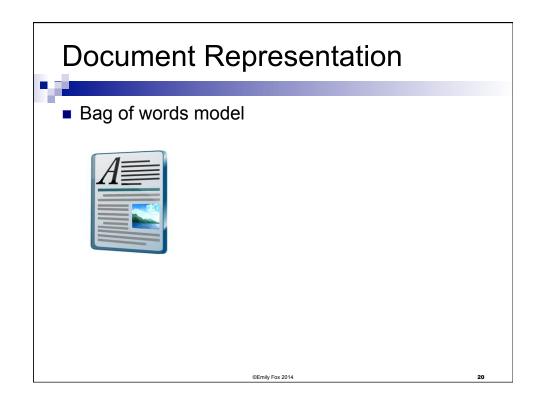
17

Document Retrieval

- - Goal: Retrieve documents of interest
 - **■** Challenges:
 - □ Tons of articles out there
 - ☐ How should we measure similarity?

©Emily Fox 2014





1-Nearest Neighbor

- Articles
- Query:
- 1-NN
 - □ Goal:
 - □ Formulation:

©Emily Fox 2014

21

k-Nearest Neighbor

- $\qquad \text{Articles} \quad X = \{x^1, \dots, x^N\}, \quad x^i \in \mathbb{R}^d$
- $\quad \blacksquare \ \, \mathsf{Query:} \ \ \, x \in \mathbb{R}^d$
- k-NN
 - □ Goal:
 - □ Formulation:

Emily Fox 2014

Distance Metrics - Euclidean

$$d(u,v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2}$$

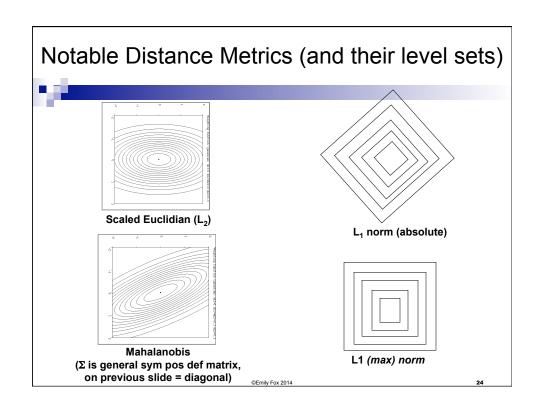
Or, more generally, $\ d(u,v) = \sqrt{\sum_{i=1}^d \sigma_i^2 (u_i - v_i)^2}$ Equivalently,

$$d(u,v) = \sqrt{(u-v)'\Sigma(u-v)} \qquad \text{where} \qquad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{bmatrix}$$

Other Metrics...

Mahalanobis, Rank-based, Correlation-based, cosine similarity...

©Emily Fox 2014



Euclidean Distance + Document Retrieval

Recall distance metric

$$d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2}$$

- What if each document were α times longer?
 - □ Scale word count vectors
 - □ What happens to measure of similarity?
- Good to normalize vectors

©Emily Fox 2014

25

Issues with Document Representation

Words counts are bad for standard similarity metrics

- Term Frequency Inverse Document Frequency (tf-idf)
 - □ Increase importance of rare words

©Emily Fox 2014

TF-IDF

Term frequency:

$$tf(t,d) =$$

- \square Could also use $\{0,1\}, 1 + \log f(t,d), \dots$
- Inverse document frequency:

$$idf(t, D) =$$

tf-idf:

$$tfidf(t, d, D) =$$

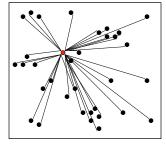
□ High for document d with high frequency of term t (high "term frequency") and few documents containing term t in the corpus (high "inverse doc frequency")

©Emily Fox 2014

.-

Issues with Search Techniques

- Naïve approach: Brute force search
 - brute force search
 - $\hfill\Box$ Given a query point $\ensuremath{\mathcal{X}}$
 - $\ \square$ Scan through each point $\ x^i$
 - □ O(N) distance computations per 1-NN query!
 - □ O(*N*log*k*) per k-NN query!



33 Distance Computations

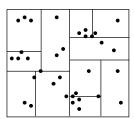
What if N is huge??? (and many queries)

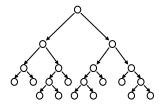
©Emily Fox 2014

__

KD-Trees

- Smarter approach: *kd-trees*
 - Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - □ Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.
- kd-trees work "well" in "lowmedium" dimensions
 - □ We'll get back to this...

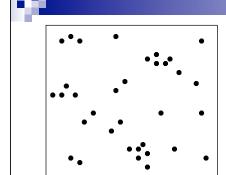




©Emily Fox 2014

29

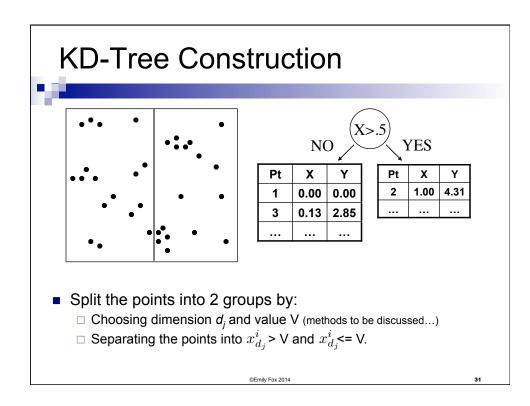
KD-Tree Construction

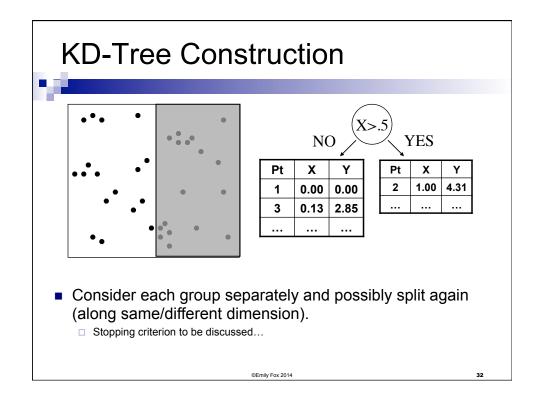


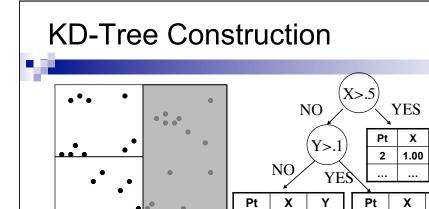
Pt	х	Υ
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85

• Start with a list of *d*-dimensional points.

©Emily Fox 2014







 Consider each group separately and possibly split again (along same/different dimension).

0.13

2.85

□ Stopping criterion to be discussed...

©Emily Fox 2014

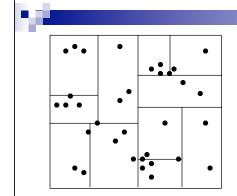
33

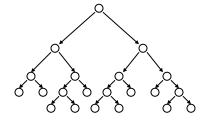
4.31

0.00

0.00

KD-Tree Construction



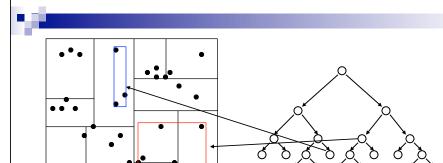


- Continue splitting points in each set
 - □ creates a binary tree structure
- Each leaf node contains a list of points

©Emily Fox 2014

..

KD-Tree Construction



- Keep one additional piece of information at each node:
 - ☐ The (tight) bounds of the points at or below this node.

©Emily Fox 2014

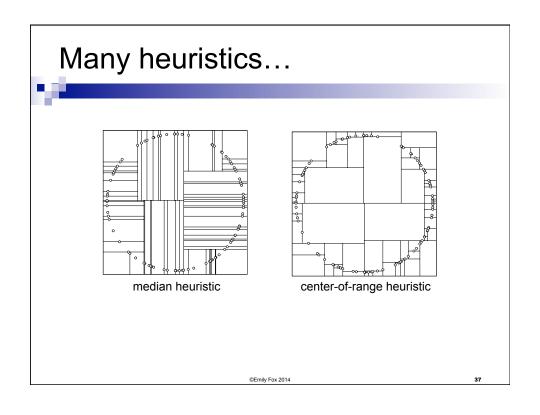
35

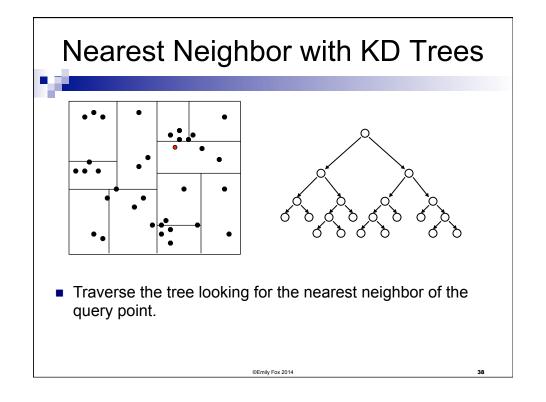
KD-Tree Construction

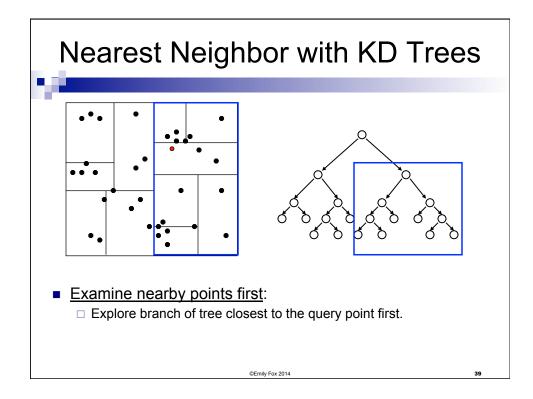
Use heuristics to make splitting decisions:

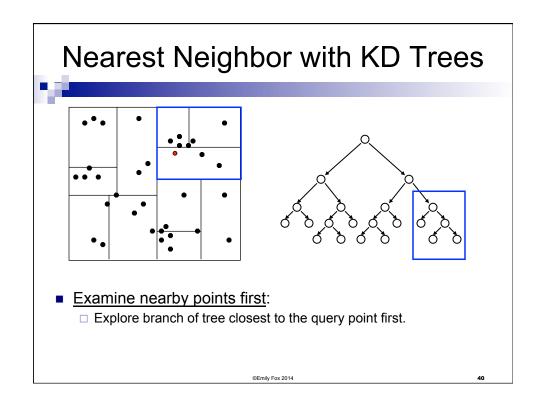
- Which dimension do we split along?
- Which value do we split at?
- When do we stop?

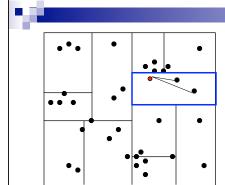
©Emily Fox 2014

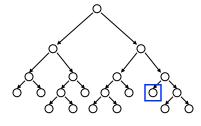










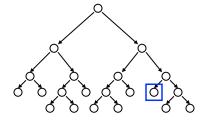


- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

©Emily Fox 2014

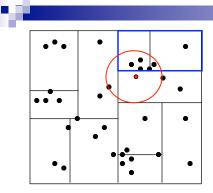
41

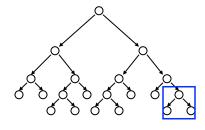
Nearest Neighbor with KD Trees



- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

©Emily Fox 2014



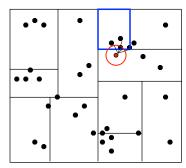


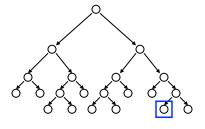
Then backtrack and try the other branch at each node visited

©Emily Fox 2014

40

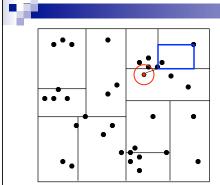
Nearest Neighbor with KD Trees

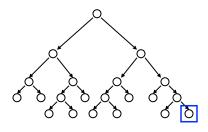




 Each time a new closest node is found, update the distance bound

©Emily Fox 2014



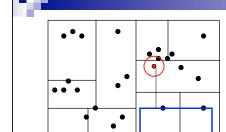


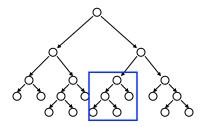
- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014

45

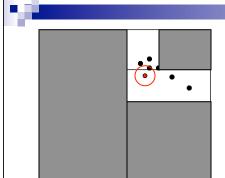
Nearest Neighbor with KD Trees

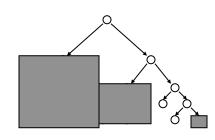




- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014





- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

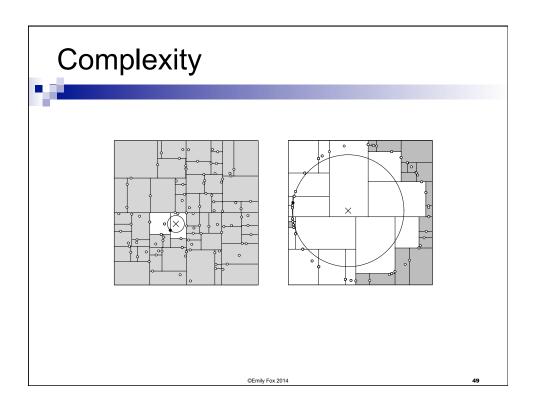
©Emily Fox 2014

47

Complexity

- For (nearly) balanced, binary trees...
- Construction
 - □ Size:
 - □ Depth:
 - □ Median + send points left right:
 - □ Construction time:
- 1-NN query
 - ☐ Traverse down tree to starting point:
 - □ Maximum backtrack and traverse:
 - □ Complexity range:
- Under some assumptions on distribution of points, we get O(logN) but exponential in d (see citations in reading)

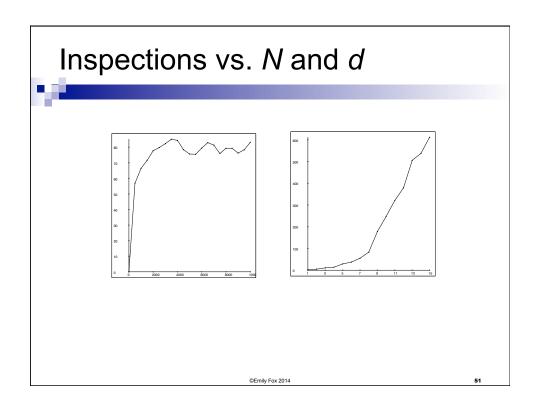
©Emily Fox 2014

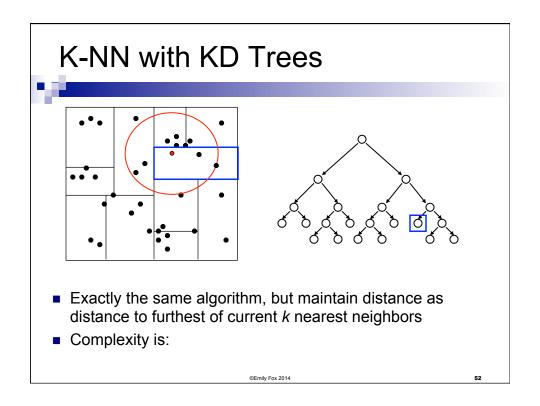


Complexity for N Queries

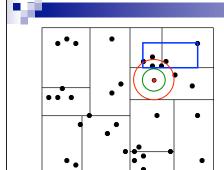
- - Ask for nearest neighbor to each document
 - Brute force 1-NN:
 - kd-trees:

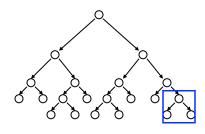
Emily Fox 2014





Approximate K-NN with KD Trees





- **Before:** Prune when distance to bounding box >
- Now: Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α .
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

©Emily Fox 2014

53

Wrapping Up – Important Points

kd-trees

- Tons of variants
 - □ On construction of trees (heuristics for splitting, stopping, representing branches...)
 - □ Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search

Distance metric and data representation are crucial to answer returned

For both...

- High dimensional spaces are hard!
 - □ Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... N >> 2^d... Typically useless.
 - □ Distances are sensitive to irrelevant features
 - $\blacksquare \quad \text{Most dimensions are just noise} \Rightarrow \text{Everything equidistant (i.e., everything is far away)}$
 - Need technique to learn what features are important for your task

©Emily Fox 2014

_.

What you need to know

- Document retrieval task
 - □ Document representation (bag of words)
 - □ tf-idf
- Nearest neighbor search
 - □ Formulation
 - □ Different distance metrics and sensitivity to choice
 - □ Challenges with large *N*
- kd-trees for nearest neighbor search
 - Construction of tree
 - □ NN search algorithm using tree
 - □ Complexity of construction and query
 - □ Challenges with large d

©Emily Fox 2014

55

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials
- In particular, see:
 - □ http://grist.caltech.edu/sc4devo/.../files/sc4devo sc4devo scalable datamining.ppt

©Emily Fox 2014