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Case Study 1: Estimating Click Probabilities 

Problem 1: Complexity of Update 
Rules for Logistic Regression 
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n  Logistic regression update: 

n  Complexity of updates: 
¨  Constant in number of data points  
¨  In number of features? 

n  Problem both in terms of computational complexity and sample complexity 

n  What can we with very high dimensional feature spaces?  
¨  Kernels not always appropriate, or scalable 
¨  What else? 
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Problem 2: Unknown Number of Features 

n  For example, bag-of-words features for text data: 
¨  “Mary had a little lamb, little lamb…” 

n  What’s the dimensionality of x? 
n  What if we see new word that was not in our vocabulary?  

¨  Obamacare 

¨  Theoretically, just keep going in your learning, and initialize wObamacare = 0 
¨  In practice, need to re-allocate memory, fix indices,… A big problem for Big Data 
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Bloom Filter: Multiple Hash Tables 

n  Single hash table -> Many false positives 

n  Multiple hash tables with independent hash functions 
¨  Apply h1(i),…, hd(i), set all bits to 1 

n  Query Q(i)?   

n  Significantly decrease probability of false positives 
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Count-Min Sketch: general case 
n  Keep p by m Count matrix  

n  p hash functions:  
¨  Just like in Bloom Filter, decrease errors with multiple hashes 
¨  Every time see string i: 
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8j 2 {1, . . . , p} : Count[j, hj(i)] Count[j, hj(i)] + 1

Finally, Sketching for LR 

n  Never need to know size of vocabulary! 
n  At every iteration, update Count-Min matrix: 

n  Making a prediction: 

n  Scales to huge problems, great practical implications… 
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Hash Kernels 

n  Count-Min sketch not designed for negative updates 
n  Biased estimates of dot products 

n  Hash Kernels: Very simple, but powerful idea to remove bias 
n  Pick 2 hash functions: 

¨  h :  Just like in Count-Min hashing 

¨  ξ : Sign hash function 
n  Removes the bias found in Count-Min hashing (see homework) 

n  Define a “kernel”, a projection ϕ for x:  
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Hash Kernels Preserve Dot Products 

n  Hash kernels provide unbiased estimate of dot-products! 

n  Variance decreases as O(1/m) 

n  Choosing m?  For ε>0, if 

¨  Under certain conditions… 
¨  Then, with probability at least 1-δ: 

©Emily Fox 2014 8 

(1� ✏)||x� x

0||22  ||�(x)� �(x0)||22  (1 + ✏)||x� x

0||22

m = O
 
log

N
�

✏2

!

�i(x) =
X

j:h(j)=i

⇠(j)xj



5 

Learning With Hash Kernels 
n  Given hash kernel of dimension m, specified by h and ξ 

¨  Learn m dimensional weight vector 
n  Observe data point x  

¨  Dimension does not need to be specified a priori! 
n  Compute ϕ(x): 

¨  Initialize ϕ(x) 
¨  For non-zero entries j of xj: 

n  Use normal update as if observation were ϕ(x), e.g., for LR using SGD:  
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Interesting Application of Hash 
Kernels: Multi-Task Learning 

n  Personalized click estimation for many users: 
¨  One global click prediction vector w: 

n  But… 
¨  A click prediction vector wu per user u: 

n  But… 

n  Multi-task learning: Simultaneously solve multiple learning related problems: 
¨  Use information from one learning problem to inform the others 

n  In our simple example, learn both a global w and one wu per user: 
¨  Prediction for user u: 

¨  If we know little about user u: 

¨  After a lot of data from user u:  
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Problems with Simple Multi-Task Learning 

n  Dealing with new user is annoying, just like dealing with 
new words in vocabulary 

n  Dimensionality of joint parameter space is HUGE, e.g. 
personalized email spam classification from Weinberger 
et al.: 
¨  3.2M emails 
¨  40M unique tokens in vocabulary 
¨  430K users 
¨  16T parameters needed for personalized classification! 
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Hash Kernels for Multi-Task Learning 

n  Simple, pretty solution with hash kernels: 
¨  Very multi-task learning as (sparse) learning problem with (huge) joint data point z for 

point x and user u: 

n  Estimating click probability as desired: 

n  Address huge dimensionality, new words, and new users using hash kernels: 

¨  Desired effect achieved if j includes both  
n  just word (for global w)  
n  word,user (for personalized wu) 
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Simple Trick for Forming Projection ϕ(x,u) 

n  Observe data point x for user u 
¨  Dimension does not need to be specified a priori and user can be unknown! 

n  Compute ϕ(x,u): 
¨  Initialize ϕ(x,u) 
¨  For non-zero entries j of xj: 

n  E.g., j=‘Obamacare’ 
n  Need two contributions to ϕ: 

¨  Global contribution 
¨  Personalized Contribution 

n  Simply: 

 

n  Learn as usual using ϕ(x,u) instead of ϕ(x) in update function 
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Results from Weinberger et al. on 
Spam Classification: Effect of m 
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Results from Weinberger et al. on Spam 
Classification: Illustrating Multi-Task Effect 
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What you need to know 
n  Hash functions 
n  Bloom filter 

¨  Test membership with some false positives, but very small number of bits per element 

n  Count-Min sketch 
¨  Positive counts: upper bound with nice rates of convergence 
¨  General case 

n  Application to logistic regression 
n  Hash kernels: 

¨  Sparse representation for feature vectors 
¨  Very simple, use two hash function (Can use one hash function…take least significant bit to define ξ) 

¨  Quickly generate projection ϕ(x) 
¨  Learn in projected space 

n  Multi-task learning: 
¨  Solve many related learning problems simultaneously 
¨  Very easy to implement with hash kernels 
¨  Significantly improve accuracy in some problems  (if there is enough data from individual users) 
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Task Description:  
Finding Similar Documents 

Machine Learning for Big Data 
CSE547/STAT548, University of Washington 

Emily Fox 
January 16th, 2014 
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Case Study 2: Document Retrieval 

Document Retrieval 
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n  Goal: Retrieve documents of interest  
n  Challenges:  

¨ Tons of articles out there 
¨ How should we measure similarity? 
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Task 1: Find Similar Documents 
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n  To begin… 
¨  Input: Query article  
¨ Output: Set of k similar articles 

Document Representation 
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n  Bag of words model 
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1-Nearest Neighbor 
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n  Articles 

n  Query:  

n  1-NN 
¨  Goal:  

¨  Formulation: 

k-Nearest Neighbor 
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n  Articles 

n  Query:  

n  k-NN 
¨  Goal:  

¨  Formulation: 

X = {x1
, . . . , x

N}, x

i 2 Rd

x 2 Rd
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Distance Metrics – Euclidean  
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Other Metrics… 
n  Mahalanobis, Rank-based, Correlation-based, cosine similarity…  
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Notable Distance Metrics (and their level sets) 

L1 norm (absolute) 

L1 (max) norm 

Scaled Euclidian (L2) 

Mahalanobis           
(Σ is general sym pos def matrix, 

on previous slide = diagonal) 
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n  Recall distance metric  

n  What if each document were      times longer? 
¨  Scale word count vectors 

¨  What happens to measure of similarity?  

n  Good to normalize vectors 

Euclidean Distance + Document Retrieval 
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Issues with Document Representation 
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n  Words counts are bad for standard similarity metrics 

 
 
 
 
n  Term Frequency – Inverse Document Frequency (tf-idf) 

¨  Increase importance of rare words 
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TF-IDF 
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n  Term frequency: 

¨  Could also use  
n  Inverse document frequency: 

n  tf-idf: 

¨  High for document d with high frequency of term t (high “term frequency”) and few 
documents containing term t in the corpus (high “inverse doc frequency”) 

tf(t, d) =

{0, 1}, 1 + log f(t, d), . . .

idf(t,D) =

tfidf(t, d,D) =

n  Naïve approach:  
Brute force search 
¨  Given a query point 
¨  Scan through each point 
¨  O(N) distance computations 

per 1-NN query! 
¨  O(Nlogk) per k-NN query! 

 

n  What if N is huge??? 
(and many queries) 

 

Issues with Search Techniques 

©Emily Fox 2014 28 

33 Distance Computations	



x

x

i



15 

n  Smarter approach: kd-trees 
¨  Structured organization of 

documents 
n  Recursively partitions points into axis 

aligned boxes. 

¨  Enables more efficient pruning of 
search space 

n  Examine nearby points first. 
n  Ignore any points that are further than 

the nearest point found so far. 

n  kd-trees work “well” in “low-
medium” dimensions 
¨  We’ll get back to this… 

KD-Trees 
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KD-Tree Construction 

Pt X Y 

1 0.00 0.00 
2 1.00 4.31 
3 0.13 2.85 
… … … 

n  Start with a list of d-dimensional points. 

30 ©Emily Fox 2014 
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KD-Tree Construction 

Pt X Y 
1 0.00 0.00 
3 0.13 2.85 
… … … 

X>.5	



Pt X Y 
2 1.00 4.31 
… … … 

YES	

NO	



n  Split the points into 2 groups by: 
¨  Choosing dimension dj and value V (methods to be discussed…) 

¨  Separating the points into       > V and      <= V. 
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KD-Tree Construction 

X>.5	



Pt X Y 
2 1.00 4.31 
… … … 

YES	

NO	



n  Consider each group separately and possibly split again 
(along same/different dimension). 
¨  Stopping criterion to be discussed… 

Pt X Y 
1 0.00 0.00 
3 0.13 2.85 
… … … 
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KD-Tree Construction 

Pt X Y 
3 0.13 2.85 
… … … 

X>.5	



Pt X Y 
2 1.00 4.31 
… … … 

YES	

NO	



Pt X Y 
1 0.00 0.00 
… … … 

Y>.1	


NO	

 YES	



n  Consider each group separately and possibly split again 
(along same/different dimension). 
¨  Stopping criterion to be discussed… 
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KD-Tree Construction 

n  Continue splitting points in each set  
¨  creates a binary tree structure 

n  Each leaf node contains a list of points 

34 ©Emily Fox 2014 
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KD-Tree Construction 

n  Keep one additional piece of information at each node: 
¨   The (tight) bounds of the points at or below this node. 
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KD-Tree Construction 

Use heuristics to make splitting decisions: 

n  Which dimension do we split along?  

n  Which value do we split at?   

n  When do we stop?    

36 ©Emily Fox 2014 
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Many heuristics… 

37 

median heuristic center-of-range heuristic 
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Nearest Neighbor with KD Trees 

38 

n  Traverse the tree looking for the nearest neighbor of the 
query point. 

©Emily Fox 2014 
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Nearest Neighbor with KD Trees 

39 

n  Examine nearby points first:  
¨  Explore branch of tree closest to the query point first. 

©Emily Fox 2014 

Nearest Neighbor with KD Trees 

40 

n  Examine nearby points first:  
¨  Explore branch of tree closest to the query point first. 

©Emily Fox 2014 
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Nearest Neighbor with KD Trees 

41 

n  When we reach a leaf node:  
¨  Compute the distance to each point in the node. 
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Nearest Neighbor with KD Trees 

42 

n  When we reach a leaf node:  
¨  Compute the distance to each point in the node. 

©Emily Fox 2014 
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Nearest Neighbor with KD Trees 

43 

n  Then backtrack and try the other branch at each node 
visited 
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Nearest Neighbor with KD Trees 

44 

n  Each time a new closest node is found, update the 
distance bound 

©Emily Fox 2014 
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Nearest Neighbor with KD Trees 

45 

n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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Nearest Neighbor with KD Trees 

46 

n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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Nearest Neighbor with KD Trees 

47 

n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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n  For (nearly) balanced, binary trees... 
n  Construction 

¨  Size: 
¨  Depth:  
¨  Median + send points left right: 
¨  Construction time:  

n  1-NN query 
¨  Traverse down tree to starting point: 
¨  Maximum backtrack and traverse: 
¨  Complexity range: 

n  Under some assumptions on distribution of points, we get 
O(logN) but exponential in d (see citations in reading) 

48 

Complexity 
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Complexity 

©Emily Fox 2014 

n  Ask for nearest neighbor to each document 

n  Brute force 1-NN: 

n  kd-trees: 

50 

Complexity for N Queries 
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Inspections vs. N and d 
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K-NN with KD Trees 
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n  Exactly the same algorithm, but maintain distance as 
distance to furthest of current k nearest neighbors 

n  Complexity is: 

©Emily Fox 2014 
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Approximate K-NN with KD Trees 

n  Before: Prune when distance to bounding box >  
n  Now: Prune when distance to bounding box >  
n  Will prune more than allowed, but can guarantee that if we return a neighbor 

at distance   , then there is no neighbor closer than         . 
n  In practice this bound is loose…Can be closer to optimal. 
n  Saves lots of search time at little cost in quality of nearest neighbor. 

r/↵r

Wrapping Up – Important Points 
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kd-trees 
n  Tons of variants 

¨  On construction of trees (heuristics for splitting, stopping, representing branches…) 
¨  Other representational data structures for fast NN search (e.g., ball trees,…) 

 
Nearest Neighbor Search 
n  Distance metric and data representation are crucial to answer returned 
 
For both… 
n  High dimensional spaces are hard! 

¨  Number of kd-tree searches can be exponential in dimension 
n  Rule of thumb…  N >> 2d… Typically useless. 

¨  Distances are sensitive to irrelevant features  
n  Most dimensions are just noise à Everything equidistant (i.e., everything is far away) 
n  Need technique to learn what features are important for your task 

©Emily Fox 2014 
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What you need to know 

n  Document retrieval task 
¨  Document representation (bag of words) 
¨  tf-idf 

n  Nearest neighbor search 
¨  Formulation 
¨  Different distance metrics and sensitivity to choice 
¨  Challenges with large N 

n  kd-trees for nearest neighbor search 

¨  Construction of tree 
¨  NN search algorithm using tree 
¨  Complexity of construction and query 
¨  Challenges with large d 
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