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Problem 1: Complexity of Update
B} Rglﬁﬁ for Logistic Regression

/N; ~aSC.
m Logistic regression update: s'wd’" y h

wgtﬂ) — wgt) + M {—Awgt) + :Bgt) [y® — Py =1]x, W(t))]}

m Complexity of updates: [acae
Constant in number of data points \/ A \/”7 *%

In number of features? 0(3)
= Problem both in terms of computational complexity and sample complexity
What § we 1/\&\)(' \% fw.{w:g 77

m What can we with very high dimensional feature spaces?

Kernels not always appropriate, or scalable é—~— || l(u"l,\ -\r‘.c(: )
What else?

ooooooooooooo




Problem 2: Unknown Number of Features

e
" JEEE
For example, hag-of-words features for text data: ‘Miwrl)
0 “Mary had a little lamb, little lamb...”

G 1 R W 2 L O -
r A 1 'T §

AN |

| BN )
Wady \l\ﬂA (] ‘\"kk\e' "dl"b'

What's the dimensionality of x? 5122 of VOCW‘NY f’"l”“""<

What if we see new word that was not in our vocabulary?
1 Obamacare

4 can chan@lz_

O Theoretically, just keep going in your learning, and initialize Wop,macare = 0
0 In practice, need to re-allocate memory, fix indices,... A big problem for Big Data
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Bloom Filter: Multiple Hash Tables
" S
m Single hash table -> Many false positives

“wsk ek brack oF ‘:)‘lnN LH' Vector
)\As L? [ \z {:‘A A ("LCA)

m Multiple hash tables with independent hash functions

o Apply hy(i),..., i), set all bi
h (’ﬂ-q‘)‘;’ﬁ&w—\é—*‘—# \,\l(‘O\mmbUfL, )-7

\nﬁ‘““‘\,'HW |, (‘0bamacore ')=9

m Query Q(i)? ford’ 4 Dbampcare
LRI ide m oy Lk vt by
QLY = very grol:;.(o(y yes

tly  Qfy: no
m Significantly decrease probability of false positives
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Count-Min Sketch: general case
N
* JEEE— )

m Keep nt Tl

c
R sy il

H‘ol.mum') ] \\ \\\\\\ \\ of COUNtS
| \ |

‘ {
m p hash functions: \Ll('nw.,') \,\ ( Pbsmecrry J

. X
1 Just like in Bloom Filter, decrease errors with multiple hashes P

[ Every time see string i (o\' / J‘l‘ \nosl. Cen
Vje{l,...,p}: Count[j, hj(i)] < Count|j, h;(i)] +1
———
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Finally, Sketching for LR
" S
wgtﬂ) — w(t) + ¢ {—)\wgt) + azgt) [y(t) —P(Y = 1|X(t)7 W(t))]}

m Never need to know size of vocabulary! J So
m At every iteration, update Count-Mln matrlx
lr] /
|h§‘\la

Vl k Coun{ fJ,l(] COMr\“‘C‘)I

’ Y“‘ & @
4= n<
VJ Coun’cf),"\ (43] < x%(y’”«P(Y:{r.}

m Making a prediction:

Remember one s of W te) Ml-'{_);“" Covnt |:), LJ/—I)]

'1 ‘AL fl-& edia ‘
et \og oc\ds- * 7_ m ‘3' "cOur\kC) L(,‘)jxl)

m Scales to huge problems, great practlcal implications...
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Hash Kernels
= JEE

m  Count-Min sketch not designed for negative updates kh‘\\’—
m Biased estimates of dot products w o(:
— . . . s
m  Hash Kernels: Very simple, but powerful idea to remove bias (AT
= Pick 2 hash functions: ?103(, )l
0 h: Justlike in Count-Min hashing — L‘ X =3 ﬂ o
1 € : Sign hash function X - i‘\“ | ;
= Removes the bias found in Count-Min hashlng ee hom
m Define a “kernel”, a projection ¢ for x: e
P éw wc,& -‘?3‘ c‘w‘”* of WJ\‘ q
~ o bin (J) 6()\)8 . ,,‘
wif =7
fi): 2 {6

Hash Kernels Preserve Dot Products
" S

Z £(5)x;

jeh(j)=i
m Hash kernels provide unbiased estimate of dot-products!

Ekt{(?(Y)‘(ﬁ(Y)] - X.y ‘[),C [m/ [omework,

m Variance decreases as O(1/m) ¢«— gkis bettar w/  anoce
A(MS
m Choosing m? For >0, if e\
ﬁ . -
m=0 (%) l"f) n date SiZe
1 Under certain conditions...
[ Then, with probability at least 1-&:

(1= e)llx = XI5 < [l(x) — ¢(x)])3 < (1 +¢)
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Learning With Hash Kernels
" S

m  Given hash kernel of dimension m, specified by h and §
Learn m dimensional weight vector - =
m Observe data point x
Dimension does not need to be specified a priori!

m  Compute ¢(x): ,
Initialize ¢(x) = () L M ) h(‘Ha/y )= ?
For non-zero entries j of X;: OJ “' Y {l '40,‘/'): - ,

q{'\(j) " i(ﬁ % ¢3 = X,mf,'

m Use normal update as if observation were ¢(x), e.g., for LR using SGD:
(t+1) (t) {_ M) 4 g (x®Yy® — _ 1) w® }
wy g —Awg + G(xXT) [y = PY = 1g(x V), wi)]

[ drc)-w")
\eng A ] wy e LXP < T
S SWLGI (A0 (R A verer oy
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Interesting Application of Hash

_ _Kernels: Multi-Task Learning
o
m  Personalized click estimation for many users: £)<f( w ’()
One global click prediction vector w: P"‘ Ji ¢t us "3 W ¥ é/ "WW. ')")

- s Plople 4B WNigu,
A click prediction vector w,, per user u: .
- pre diek with W, X
e ?l-ofl‘- don ™t eacl, 10 vide mMuch data U’\L‘l}
m  Multi-task learning: Simultaneously solve multiple learning related problems:

Use information from one learning problem to inform the others

= In our simple example, learn both a global w and one w,, per user:

Prediction for user u: (w_‘_ Nlﬁ) .X = we X 4 wu')(

If we know little about user u: LbS\ [““ y \AI" X

After a lot of data from user u:

us'mﬁ WAWu  as \oukr vector
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Problems with Simple Multi-Task Learning
“ J

m Dealing with new user is annoying, just like dealing with
new words in vocabulary

m Dimensionality of joint parameter space is HUGE, e.qg.
personalized email spam classification from Weinberger
et al.:

3.2M emails

40M unique tokens in vocabulary

430K users

16T parameters needed for personalized classification!
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Hash Kernels for Multi-Task Learning
"

m  Simple, pretty solution with hash kernels:
Very multi-task learning as (sparse) learning problem with (huge) joint data point z for
E —_—

poin‘t_):e\nd user u: o€ users
;__;\/ /\/\_’———\
'Z(xw) = ( Xy, /th 0,10, w /O/“‘lb)

————- \/\,_—
m  Estimating click probafﬁ)lf%y as desweg‘ﬂﬂ‘ : user
W= ( Wg use ) . weX
E /gl e ) w0
m  Address huge dimensionality, new words, and new users using hash kernel
¢ {% ) vat ke w/ hagl, kernels MW»)'X
X )
(/V é Z_ g(’) %M")

Desired effect achieved if j includes both J L{j)q‘
= just word (for global w)
= word,user (for personalized w,)
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Simple Trick for Forming Projection ¢(x,u)
"

m Observe data point x for user u new
Dimension does not need to be specified a priori and user can be ualemewn!
/Q A:’m ?0‘, w)
m Compute ¢(x,u): Lon [
Initialize ¢(x,u) = O (,kﬂ“ly.
For non-zero entries j of x;:
» E.g., j='Obamacare’

_ {(tOksruet)
= Need two contributionsw l\('oLM"“’c') 4= i

Global contribution ,&
Personalized Contribution -CiL 0 (/" 'mlef
. = |1 ey 9 ur e V4
= Simply: U= ina2¥

({homatsre vl 7)) 2 ((‘Domcare vs1d7 ) X;

m Learn as usual using ¢(x,u) instead of ¢(x) in update function
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Results from Weinberger et al. on

_ SEam Classification: Effect of m
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Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error €4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%.
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Results from Weinberger et al. on Spam

Classification: lllustrating Multi-Task Effect
" JEE

14
= 1.2 (0]
"2 1 -&-[1)
2038 : ; [2,3]

—_

© 06 (4,7
1 —-[8,15]
b

. [16,31]
€ 02 [32,64]
g 64,00
§ 0 (64, .)

18 20 22 24 26 ==baseline

b bits in hash-table

Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.
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What you need to know
* JEE—

Hash functions
m Bloom filter
Test membership with some false positives, but very small number of bits per element
m  Count-Min sketch
Positive counts: upper bound with nice rates of convergence
General case
m Application to logistic regression
m Hash kernels:
Sparse representation for feature vectors
Very simple, use two hash function (Can use one hash function...take least significant bit to define §)
Quickly generate projection ¢(x)
Learn in projected space
m  Multi-task learning:
Solve many related learning problems simultaneously
Very easy to implement with hash kernels
Significantly improve accuracy in some problems (it there is enough data from individual users)
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Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents

Machine Learning for Big Data
CSES47/STAT548, University of Washington

Emily Fox
January 16, 2014
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Document Retrieval
= JEE
m Goal: Retrieve documents of interest

m Challenges:
Tons of articles out there ¢—
How should we measure similarity?
- ————

ooooooooooooo




Task 1: Find Similar Documents
= JEE
m To begin... v el

O Input: Query article X o1 cles
1 Output: Set of k similar articles Py

Document Representation
" JEEE

= Bag of words model o weed Count:
we,
14: Wé,
— x=| | d=1vl
= ' Ste oF
S \[omlou(&f“y
\anore orbar We
10( the words JJ
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1-Nearest Neighbor
" J
m Articles = {x‘,., «*§ x< e R
X 7 & N ,r('tc\fs
m Query: ~

= 1-NN .,
[ Goal: Q'm(l o.ra('ic[:. in ,X “c‘DSLs{ ts X

P ned distonce mebric &

1 Formulation: [M V)
Vi

)(w: arg min C\/)@;(\
Y;f’x L query arecle

k-Nearest Neighbor
" S
m Articles X = {z!,...,2"}, z'eR?

m Query: z € R¢

= k-NN )
01 Goal: Q;nl k priides 10 7{ Closcs‘l' %o X

1 Formulation:

GERE A ,XNN"S C X ‘
st. N xt e X\ XNN . "":L/‘:d%“:::}u"
(x4 2 X'{‘&ﬁxwﬂ\(x""*,x)
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Distance Metrics — Euclidean
= JEE

d
d(u,v) = Z(ui_vi)2 = "M'V"Z

=1
‘ i sux[c(l

d L."
Or, more generally, d(u,v) = | o?(u; —v;)?
=1 A yeiqht for bim <

Equivalently,
2
d(u,v) = /(u=0)S(u—v) G
2 .
7 where X=|. . .
Other Metrics... 0o 0 ... oF

m Mahalanobis, Rank-based, Correlation-based, cosine similarity...
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Notable Distance Metrics (and their level sets)

" Eme—
o Jistorct

¢
’ r f:wf"\

cove e
Abowt
¢ MMJS
W

Scaled Euclidian (Lz)_)(}l

L, norm (absolute)
————

Mahalanobis

(= is general sym pos def matrix, Lgh(max) norm
on previous slide = diagonal)
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Euclidean Distance + Document Retrieval
=

m Recall distance metric

d
d(u,v) = J Z(uz — v;)?

i=1
m What if each document were (¢ times longer?

Scale word count vectors
U&— olU

Ve odv
What happens to measure of similarity?
pav-ovil, o o flu-vll, > lu-vll, L
LY how less S
m Good to nol'mali e vectors

full, 2 \lly =
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Issues with Document Representation
" JEE

m Words counts are bad for standard similarity metrics

95 —
::;E w1 Wpréf ]
coM,w?'\ —

U

u"Tr,u. (r\uﬁ.c/s‘ N

(Ommon, words lieg “kree! and "‘Mj"

dow nrkt the (unx Vectors ¢(

m Term Frequency — Inverse Document Frequency (tf-idf) g{"k,)
Increase importance of rare words

©Emily Fox 2014 26

13



TF-IDF
"

m  Term frequency: R &z(
tt(t,d) = 4 of otter of ted £ /\ ‘,rtva*

WS
m - 80C qaed) € g
Could alsouse {0,1},1 +log f(t,d),... 5)(?””‘/‘”"“’6 5 lord

m ot
m Inverse document frequency:

| Xl
i (7 ): — > t{ml’\
d“% lOS |+ Hje')(:\:ééﬂ D Jocsﬁ
. thidf 70  ow

tfidf(t, d, §) = J&(&,A) X idf (’c,’)(S

High for document d with high frequency of term t (high “term frequency”) and few
documents containing term t in the corpus (high “inverse doc frequency”)
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Issues with Search Techniques
" JEE
m Naive approach:
Brute force search

Given a query point X ) )
Scan through each point z" s .
O(N) distance computations .

per 1-NN query!

O(Nlogk) per k-NN query! .
Loty Avet

/& Keef ?(;2’ kZP w *4

m Whatif Ni e?7? ‘We\op‘)k 33 Distance Computations

(and many queries)
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KD-Trees

* JE— {
18 txamples
m Smarter approach: kd-trees
Structured organization of *e el
documents R ..
m Recursively partitions points into axis oo e ¢
aligned boxes. 4 . * *
Enables more efficient pruning of "l
search space e e *
= Examine nearby points first.
= Ignore any points that are further than 0
the nearest point found so far. / \
m kd-trees work “well” in “low- 0 5
medium” dimensions d/ \b J 5
We'll get back to this... SHELHLEY &Yy
Svd8b dY
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KD-Tree Construction  ;..\* ,

" JEE L/ ,],
e®e ° ° Pt X Y
\
°oe 1 |0.00| 000 X §
. . * 2 [1.00] 431 | x
o0 o b 3
3 | 013 2.85
° ° ° .
[ ] . [ ] ;
[ ] ° * :.. * [ ]
[ ]

m Start with a list of d-dimensional points.
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KD-Tree Construction
" SN v

%o o °
NO A YES
oo.o .. ° Pt X Y Pt X Y
. . . 1 |0.00|0.00 2 |1.00]431
.’ 3 |013]2.85
[ ° [ ] o [ ]
< _— . b Cﬂ‘se' - §
SV T Kin®™ % s a8 V=0

= Split the points into 2 greGps by:,— "
I Choosing dimension d; and value V (methods to be discussed...)
2.1 Separating the points into xilj >V and xflj<= V.

©Emily Fox 2014
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KD-Tree Construction

°oe NO /@\YES

° 4 °
oo o e Pt X Y Pt X Y
. . . 1 lo.00|000| | 2 [1.00]431
* .t 3 0413285
J
. .:. [ ] .

m Consider each group separately and possibly split again
(along same/different dimension).
Stopping criterion to be discussed...

0 how Lo L“MSC imepSion

©Emily Fox 2014
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KD-Tree Construction

V:O\ --.- d .

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...

©Emily Fox 2014
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KD-Tree Construction

°e o .’ ..... o/\‘
P e A
- TSN

m Continue splitting points in each set
creates a binary tree structure

m Each leaf node contains a list of points

Sa‘fiﬁc\’;n Al/ [onJ[ﬂdq_S
down the ‘ree to
ghox point

©Emily Fox 2014
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KD-Tree Construction

O

4

p . R
" i /%%\c’fb&b

: Sb8b &b

m Keep one additional piece of information at each node:
The (tight) bounds of the points at or below this node.

KD-Tree Construction
" JEE—
Use heuristics to make splitting decisions:
m Which dimension do we split along?
widesk Lim (or AI‘(’tfnad'&’;

m Which value do we split at?
m&iw 0f ¢ lose gPI;{' ((fm ( of Center \

m When do we stop?
(%l.wl.( ‘t(l\a.v\ m Pes le&
Or
\00)( hiks  Minimum w: bty
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Many heuristics...

3 &
[ —

TO

median heuristic

1]

SELEIN]

7 & bl &

Lt

center-of-range heuristic
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Nearest Neighbo
* JEE—

el |

0[/.

query point.

% * o AQMW (C

@@@@@@@@

r with KD Trees

ﬁ arkd 6(2 >

N\,

O

<N /\

SiRe 6@’\6\@ d’é/\b\b & d’\b\b

m Traverse the tree looking for the nearest neighbor of the

xxxxx
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Nearest Neighbor with KD Trees

e%e ol ) 5
. .. e ° . / \X7X°
e o O
AT AN N
. _:.: o ARe cs’\tj,o’\b\b o’d,\b\b
Yo

m Examine nearby points first:
Explore branch of tree closest to the query point first.
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e : i /\ y > Yo
1T AN S

e SiRe d/d/\b\b dp’\b\b & d:b\b

m Examine nearby points first:
Explore branch of tree closest to the query point first.

ooooooooooooo
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Nearest Neighbor with KD Trees

SN

O

Go
(5/ \bo’ CS/\b\bcs’ d/\b\ai _@d’\b\b

m When we reach a leaf node:
Compute the distance to each point in the node.
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Nearest Neighbor with KD Trees

: Jiseonte o closest
[
T %n
. | \, b C{d’\b\b A0 Blx
AOCQ N‘J l’\tvz Lo LL
m When we reach a leaf node: in thig lox (uw)? NO

Compute the distance to each point in the node.

P

ooooooooooooo
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Nearest Neighbor with KD Trees
* JEE

N e 2N

N BARAY 65 ¢

m Then backtrack and try the other branch at each node
visited
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Nearest Neighbor with KD Trees

" JEE—
oW U"f Joser nearest r\wjl'(w/

Tl AL

SR d/\b />
. . :.: o i) o/d/\b\b d,c{\b\b o @\b\b

m Each time a new closest node is found, update the
distance bound

ooooooooooooo

22



Nearest Neighbor with KD Trees

mt,t(.s!-c" 1o

%o ) ualL ot
. . Cﬁ{—./ / \ (—’::mf
o0 o w
d . ° ° 6/ \b / 0 box o
. . :.: o i) o,cs’\b\b d,o’\b\b of /\b@Q

m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor

No arh (,‘( (n

ooooooooooooo

thir box (owll be e WM.
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