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Learning Problem for Click Prediction
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m  Many approaches (e.qg., logistic regression, SVMs, naive Bayes, decision
trees, boosting,...) —_——
Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Features can be discrete or continuous!
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Standard v. Regularized Updates
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Stochastic Gradient Ascent for

. Logistic Reﬂression

m Logistic loss as a stochastic function:
Eyx [((w.x)] = Ex [In P(yx, w) — Al[w][3]
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m Batch gradient ascent updates: Q[’Vd)
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AdaGrad in Euclldean Space
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m Each feature dimension has it's own learning rate!
Adapts with ¢
T metry of the past observations into account

Primary role of n is determining rate the first time a feature is encountered
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Problem 1: Complexity of Update
RH'ﬁﬁ for Logistic Regression

m Logistic regression update:
W™ e wl® g { w200 - PO =10, wh)]}

m Complexity of updates:

Constant in number of data points

In number of features?
= Problem both in terms of computational complexity and sample complexity

m What can we with very high dimensional feature spaces?
Kernels not always appropriate, or scalable
What else?
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Problem 2: Unknown Number of Features
" SN

m For example, bag-of-words features for text data:
“Mary had a little lamb, little lamb...”

m What's the dimensionality of x?
m What if we see new word that was not in our vocabulary?
Obamacare

Theoretically, just keep going in your learning, and initialize Wopamacare = 0
In practice, need to re-allocate memory, fix indices,... A big problem for Big Data
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What Next?
= JEEE

m Hashing & Sketching!
Addresses both dimensionality issues and new features in one approach!

m Let’s start with a much simpler problem: Is a string in our vocabulary?
Membership query

m How do we keep track?

Explicit list of strings
= Very slow

Fancy Trees and Tries
= Hard to implement and maintain

Hash tables?
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Hash Functions and Hash Tables
= JEE

Hash functions map keys to integers (bins):
Keys can be integers, strings, objects,...

Simple example: mod
h(i) = (a.i + b) % m

Random choice of (a,b) (usually primes)
If inputs are uniform, bins are uniformly used
From two results can recover (a,b), so not pairwise independent -> Typically use fancier
hash functions
Hash table:
Store list of objects in each bin

Exact, but storage still linear in size of object ids, which can be very long
= E.g., hashing very long strings, entire documents
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Hash Bit-Vector Table-based
Membership Query
JE—

Approximate queries with one-sided error: Accept false positives only
If we say no, element is not in set
If we say yes, element is very to be likely in set

Given hash function, keep binary bit vector v of length m:

Query Q(i): Element i in set?

Collisions:

Guarantee: One-sided errors, but may make many mistakes
How can we improve probability of correct answer?
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Bloom Filter: Multiple Hash Tables
* JE

m Single hash table -> Many false positives

m Multiple hash tables with independent hash functions
Apply hy(i),..., hy(i), set all bits to 1

m Query Q(i)?

m Significantly decrease probability of false positives
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Analysis of Bloom Filter
" JEE——
m Want to keep track of n elements with false positive
probability of >0... how large m & d?

m Simple analysis yields:

nlog, %

m=——>% = 1.5nlog,

1
In 2 )
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Sketching Counts
* JE
m Bloom Filter is super cool, but not what we need...

We don't just care about whether a feature existed before, but to keep
track of counts of occurrences of features! (assuming x; integer)

m Recall the LR update:
wgtﬂ) — wgt) + e {—Awgt) + xgt) [y® — Py = 1]x, W(t))]}

m Must keep track of (weighted) counts of each feature:
E.g., with sparse data, for each non-zero dimension i in x®:

m Can we generalize the Bloom Filter?
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Count-Min Sketch: single vector
" JEE——

m  Simpler problem: Count how many times you see each string
m Single hash function:

Keep Count vector of length m

every time see string /:

Count[h(i)] < Count[h(7)] + 1

Again, collisions could be a problem:
= g is the count of element i:
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Count-Min Sketch: general case
* JEE

m Keep p by m Count matrix

m p hash functions:
Just like in Bloom Filter, decrease errors with multiple hashes
Every time see string /:

Vjie{l,...,p}: Count[j, hj(i)] < Countlj, h;(i)] +1

Querying the Count-Min Sketch
" S
Vi e{l,...,p}: Countlj, hj(i)] < Countlj, h;(i)] +1

m Query Q(i)?
What is in Count[j,k]?

Thus:

Return:




Analysis of Count-Min Sketch

" JEE
a; = min Countl[j, h(i)] > a;
j

el el

m Then, after seeing n elements:
a; < a;+en

m With probability at least 1-0
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Proof of Count-Min for Point Query with

Positive Counts: Part 1 — Expected Bound
" JEE

m |, = indicator that i & k collide on hash j:

Bounding expected value:

X;; = total colliding mass on estimate of count of i in hash j:

Bounding colliding mass:

Thus, estimate from each hash function is close in expectation
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Proof of Count-Min for Point Query with Positive
Counts: Part 2 — High Probability Bounds
" JEE

m What we know: C'ount[j, h;(1)] = a; + X; ; E[Xi,j] < -n

Dl

m Markov inequality: For z,,...,z, positive iid random variables

P(Vz : 2z > aE[z]) < a™*

m Applying to the Count-Min sketch:
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But updates may be positive or negative
"
wEtH) —w U {—Aw§t> + xgt) [y® — Py =1]xW, w(t))]}

%

m  Count-Min sketch for positive & negative case
a; no longer necessarily positive

m Update the same: Observe change A, to element i:

Vie{l,...,p}: Count[j, hj(i)] < Countlj, h;(i)] + A,;

Each Countfj,h(i)] no longer an upper bound on a;
m How do we make a prediction?

= Bound: |&z — ai| < 3€Ha||1
With probability at least 1-5'4, where ||a|| = Z; |a|
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Finally, Sketching for LR
" S

W 0 4 g {3 + 2O - P(Y = 1, w0}

m Never need to know size of vocabulary!
m At every iteration, update Count-Min matrix:

m Making a prediction:

m Scales to huge problems, great practical implications...
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Hash Kernels
" JEE
Count-Min sketch not designed for negative updates

Biased estimates of dot products

Hash Kernels: Very simple, but powerful idea to remove bias

Pick 2 hash functions:
h : Just like in Count-Min hashing

€ : Sign hash function

= Removes the bias found in Count-Min hashing (see homework)

m Define a “kernel”, a projection ¢ for x:
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Hash Kernels Preserve Dot Products
" S
¢i(x) = > &)x;

J:h(j)=i
m Hash kernels provide unbiased estimate of dot-products!
m Variance decreases as O(1/m)

m Choosing m? For >0, if
S <log J(\;[)

€2
Under certain conditions...
Then, with probability at least 1-6:

(1= ollx = x'[|3 < llo(x) — o(x)Iz < (1 + €)||x —x’
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Learning With Hash Kernels
" JE

m  Given hash kernel of dimension m, specified by h and ¢
Learn m dimensional weight vector
m Observe data point x
Dimension does not need to be specified a priori!
m  Compute ¢(x):
Initialize ¢(x)
For non-zero entries j of x;:

m Use normal update as if observation were ¢(x), e.g., for LR using SGD:
W™ e wl g { x4 6i(xO)y® — PY = 1]6(x?), w®)] |
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Interesting Application of Hash

Kernels: Multi-Task Learning
“
m  Personalized clifzk estir.na.tion for many users:

= But...
A click prediction vector w, per user u:

= But...

m  Multi-task learning: Simultaneously solve multiple learning related problems:
Use information from one learning problem to inform the others

= In our simple example, learn both a global w and one w,, per user:
Prediction for user u:

If we know little about user u:

After a lot of data from user u:
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Problems with Simple Multi-Task Learning
" JEE

m Dealing with new user is annoying, just like dealing with
new words in vocabulary

m Dimensionality of joint parameter space is HUGE, e.g.
personalized email spam classification from Weinberger
et al.:

3.2M emails

40M unique tokens in vocabulary

430K users

16T parameters needed for personalized classification!
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Hash Kernels for Multi-Task Learning
" SN

= Simple, pretty solution with hash kernels:

Very multi-task learning as (sparse) learning problem with (huge) joint data point z for
point x and user u:

m  Estimating click probability as desired:

m  Address huge dimensionality, new words, and new users using hash kernels:

Desired effect achieved if j includes both
= just word (for global w)
= word,user (for personalized w,)
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Simple Trick for Forming Projection ¢(x,u)
* JEE—

m Observe data point x for user u
Dimension does not need to be specified a priori and user can be unknown!

m  Compute ¢(x,u):
Initialize ¢(x,u)
For non-zero entries j of x;:
= E.g., j='Obamacare’
= Need two contributions to ¢:
Global contribution
Personalized Contribution

= Simply:

m Learn as usual using ¢(x,u) instead of ¢(x) in update function
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Results from Weinberger et al. on

_ SEam Classification: Effect of m
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Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error ¢4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%. E
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Results from Weinberger et al. on Spam

Classification: lllustrating Multi-Task Effect
"
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Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.
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What you need to know
o

m Hash functions

m Bloom filter
Test membership with some false positives, but very small number of bits per element
m  Count-Min sketch
Positive counts: upper bound with nice rates of convergence
General case
m Application to logistic regression
m Hash kernels:
Sparse representation for feature vectors
Very Simple, use two hash function (Can use one hash function...take least significant bit to define §)
Quickly generate projection ¢(x)
Learn in projected space
m  Multi-task learning:
Solve many related learning problems simultaneously
Very easy to implement with hash kernels
Significantly improve accuracy in some problems (it there is enough data from individual users)
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