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Case Study 1: Estimating Click Probabilities 

Ad Placement Strategies 

n  Companies bid on ad prices 

n  Which ad wins? (many simplifications here) 
¨  Naively:  

¨  But: 

¨  Instead: 
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Learning Problem for Click Prediction 

n  Prediction task: 
 
n  Features: 

 
 
 
n  Data: 

¨  Batch: 
 
 
¨  Online: 

 
n  Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision 

trees, boosting,…) 
¨  Focus on logistic regression; captures main concepts, ideas generalize to other approaches 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨ Assume a particular functional form 
¨ Sigmoid applied to a linear function 

of the data: 

Z 

Features can be discrete or continuous! 
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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AdaGrad in Euclidean Space 

n  For       , 
 
n  For each feature dimension, 

    where  

n  That is, 

n  Each feature dimension has it’s own learning rate! 
¨  Adapts with t 
¨  Takes geometry of the past observations into account 
¨  Primary role of η is determining rate the first time a feature is encountered  
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Problem 1: Complexity of Update 
Rules for Logistic Regression 
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n  Logistic regression update: 

n  Complexity of updates: 
¨  Constant in number of data points  
¨  In number of features? 

n  Problem both in terms of computational complexity and sample complexity 

n  What can we with very high dimensional feature spaces?  
¨  Kernels not always appropriate, or scalable 
¨  What else? 
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Problem 2: Unknown Number of Features 

n  For example, bag-of-words features for text data: 
¨  “Mary had a little lamb, little lamb…” 

n  What’s the dimensionality of x? 
n  What if we see new word that was not in our vocabulary?  

¨  Obamacare 

¨  Theoretically, just keep going in your learning, and initialize wObamacare = 0 
¨  In practice, need to re-allocate memory, fix indices,… A big problem for Big Data 
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What Next? 
n  Hashing & Sketching! 

¨  Addresses both dimensionality issues and new features in one approach! 

n  Let’s start with a much simpler problem: Is a string in our vocabulary? 
¨  Membership query 

n  How do we keep track? 
¨  Explicit list of strings 

n  Very slow 

¨  Fancy Trees and Tries 
n  Hard to implement and maintain 

¨  Hash tables? 
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Hash Functions and Hash Tables 
n  Hash functions map keys to integers (bins): 

¨  Keys can be integers, strings, objects,… 

n  Simple example: mod 
¨  h(i) = (a.i + b) % m 

¨  Random choice of (a,b) (usually primes) 
¨  If inputs are uniform, bins are uniformly used 
¨  From two results can recover (a,b), so not pairwise independent -> Typically use fancier 

hash functions 
n  Hash table: 

¨  Store list of objects in each bin 
¨  Exact, but storage still linear in size of object ids, which can be very long 

n  E.g., hashing very long strings, entire documents 
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Hash Bit-Vector Table-based 
Membership Query 

n  Approximate queries with one-sided error: Accept false positives only 
¨  If we say no, element is not in set 
¨  If we say yes, element is very to be likely in set 

 
n  Given hash function, keep binary bit vector v of length m: 

n  Query Q(i): Element i in set? 
¨    
¨    

n  Collisions: 

n  Guarantee: One-sided errors, but may make many mistakes 
¨  How can we improve probability of correct answer? 
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Bloom Filter: Multiple Hash Tables 

n  Single hash table -> Many false positives 

n  Multiple hash tables with independent hash functions 
¨  Apply h1(i),…, hd(i), set all bits to 1 

n  Query Q(i)?   

n  Significantly decrease probability of false positives 
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Analysis of Bloom Filter 

n  Want to keep track of n elements with false positive 
probability of δ>0… how large m & d? 

n  Simple analysis yields: 
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Sketching Counts 

n  Bloom Filter is super cool, but not what we need… 
¨  We don’t just care about whether a feature existed before, but to keep 

track of counts of occurrences of features! (assuming xi integer) 

n  Recall the LR update: 

 
n  Must keep track of (weighted) counts of each feature: 

¨  E.g., with sparse data, for each non-zero dimension i in x(t): 

 

n  Can we generalize the Bloom Filter? 
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Count-Min Sketch: single vector 
n  Simpler problem: Count how many times you see each string 
n  Single hash function:  

¨  Keep Count vector of length m 
¨  every time see string i: 

   
  

 
 
¨  Again, collisions could be a problem: 

n  ai is the count of element i: 
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Count-Min Sketch: general case 
n  Keep p by m Count matrix  

n  p hash functions:  
¨  Just like in Bloom Filter, decrease errors with multiple hashes 
¨  Every time see string i: 
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Querying the Count-Min Sketch 

n  Query Q(i)?  
¨  What is in Count[j,k]? 

¨  Thus: 

¨  Return: 
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Analysis of Count-Min Sketch 

n  Set: 

n  Then, after seeing n elements: 

n  With probability at least 1-δ  
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Proof of Count-Min for Point Query with 
Positive Counts: Part 1 – Expected Bound 

n  Ii,j,k = indicator that i & k collide on hash j: 

n  Bounding expected value: 
 
 
n  Xi,j = total colliding mass on estimate of count of i in hash j: 

n  Bounding colliding mass: 

n  Thus, estimate from each hash function is close in expectation 
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Proof of Count-Min for Point Query with Positive 
Counts: Part 2 – High Probability Bounds 

n  What we know: 
 
n  Markov inequality: For z1,…,zk positive iid random variables 

n  Applying to the Count-Min sketch: 
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But updates may be positive or negative 

n  Count-Min sketch for positive & negative case 
¨  ai no longer necessarily positive 

n  Update the same: Observe change Δi to element i: 

¨  Each Count[j,h(i)] no longer an upper bound on ai 

n  How do we make a prediction? 

n  Bound: 
¨  With probability at least 1-δ1/4, where ||a|| = Σi |ai|   
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Finally, Sketching for LR 

n  Never need to know size of vocabulary! 
n  At every iteration, update Count-Min matrix: 

n  Making a prediction: 

n  Scales to huge problems, great practical implications… 
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Hash Kernels 

n  Count-Min sketch not designed for negative updates 
n  Biased estimates of dot products 

n  Hash Kernels: Very simple, but powerful idea to remove bias 
n  Pick 2 hash functions: 

¨  h :  Just like in Count-Min hashing 

¨  ξ : Sign hash function 
n  Removes the bias found in Count-Min hashing (see homework) 

n  Define a “kernel”, a projection ϕ for x:  
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Hash Kernels Preserve Dot Products 

n  Hash kernels provide unbiased estimate of dot-products! 

n  Variance decreases as O(1/m) 

n  Choosing m?  For ε>0, if 

¨  Under certain conditions… 
¨  Then, with probability at least 1-δ: 
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Learning With Hash Kernels 
n  Given hash kernel of dimension m, specified by h and ξ 

¨  Learn m dimensional weight vector 
n  Observe data point x  

¨  Dimension does not need to be specified a priori! 
n  Compute ϕ(x): 

¨  Initialize ϕ(x) 
¨  For non-zero entries j of xj: 

n  Use normal update as if observation were ϕ(x), e.g., for LR using SGD:  
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Interesting Application of Hash 
Kernels: Multi-Task Learning 

n  Personalized click estimation for many users: 
¨  One global click prediction vector w: 

n  But… 
¨  A click prediction vector wu per user u: 

n  But… 

n  Multi-task learning: Simultaneously solve multiple learning related problems: 
¨  Use information from one learning problem to inform the others 

n  In our simple example, learn both a global w and one wu per user: 
¨  Prediction for user u: 

¨  If we know little about user u: 

¨  After a lot of data from user u:  
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Problems with Simple Multi-Task Learning 

n  Dealing with new user is annoying, just like dealing with 
new words in vocabulary 

n  Dimensionality of joint parameter space is HUGE, e.g. 
personalized email spam classification from Weinberger 
et al.: 
¨  3.2M emails 
¨  40M unique tokens in vocabulary 
¨  430K users 
¨  16T parameters needed for personalized classification! 
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Hash Kernels for Multi-Task Learning 

n  Simple, pretty solution with hash kernels: 
¨  Very multi-task learning as (sparse) learning problem with (huge) joint data point z for 

point x and user u: 

n  Estimating click probability as desired: 

n  Address huge dimensionality, new words, and new users using hash kernels: 

¨  Desired effect achieved if j includes both  
n  just word (for global w)  
n  word,user (for personalized wu) 
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Simple Trick for Forming Projection ϕ(x,u) 

n  Observe data point x for user u 
¨  Dimension does not need to be specified a priori and user can be unknown! 

n  Compute ϕ(x,u): 
¨  Initialize ϕ(x,u) 
¨  For non-zero entries j of xj: 

n  E.g., j=‘Obamacare’ 
n  Need two contributions to ϕ: 

¨  Global contribution 
¨  Personalized Contribution 

n  Simply: 

 

n  Learn as usual using ϕ(x,u) instead of ϕ(x) in update function 
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Results from Weinberger et al. on 
Spam Classification: Effect of m 
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Results from Weinberger et al. on Spam 
Classification: Illustrating Multi-Task Effect 
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What you need to know 
n  Hash functions 
n  Bloom filter 

¨  Test membership with some false positives, but very small number of bits per element 

n  Count-Min sketch 
¨  Positive counts: upper bound with nice rates of convergence 
¨  General case 

n  Application to logistic regression 
n  Hash kernels: 

¨  Sparse representation for feature vectors 
¨  Very simple, use two hash function (Can use one hash function…take least significant bit to define ξ) 

¨  Quickly generate projection ϕ(x) 
¨  Learn in projected space 

n  Multi-task learning: 
¨  Solve many related learning problems simultaneously 
¨  Very easy to implement with hash kernels 
¨  Significantly improve accuracy in some problems  (if there is enough data from individual users) 
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