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Learning Problem for Click Prediction
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m  Many approaches (e.g., logistic regression, SVMs, naive Bayes, decision

trees, boostingef—. —— o
1 Focus o captures main concepts, ideas generalize to other approaches
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Logistic 1
function

Logistic Regression  (orsigmoia) 1 +c#(-=)
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m Learn P(Y|X) directly

1 Assume a particular functional form :
1 Sigmoid applied to a linear function

of the data:
P(Y =0|X,W) = ! & 0
- 1+ efﬂp(‘wo + 3 w; X;) z
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Features can be discrete or continuous!
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Standard v. Regularized Updates

m Maximum conditional likelihood estimate osml"“{—
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m Regularized maximum conditional likelihood estimate
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Stochastic Gradient Ascent for

. Logistic Reﬂression

m Logistic loss as a stochastic function:

Ex [l(w,x)] = Ex [lnP(y]x W) — )\HWH2]

g
m Batch gradient ascent updates: (){ N ) o\olm p g 3
P B
wgt+1) . wgi) +1 {—)\wz(i) + % ngﬂ)[y(y) — P(Y = 1|xD, w(®)] \~)
j=1
) 4 al .
m Stochastic gradlent ascent u W Al deRpld
Online setting: x@ y4 O(,k
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AdaGrad in Euclidean Space
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m For each feature dimension, “”{‘P*a ve JJ‘) e
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m Each feature dimension has it's own Iésrﬁihg rate!

— Adapts with ¢

——
4 Takes geometry of the past observations into account
Primary role of n is determining rate the first time a feature is encountered
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Problem 1: Complexity of Update
B} RH'ﬁﬁ fgr Logistic Regression

mJ “aSC.
m Logistic regression update: 5'“7“"' y b
w™ —w® 1, {_Awgﬂ + 2P y® — P(y = 1x, w(t))]}

m Complexity of updates:
Constant in number of data points \/

In number of features? ([
= Problem both in terms of computational complexity and sample complexity

What W we 1/\%( R Leotoces, 77
m What can we with very high dimensional feature spaces?

Kernels not always appropriate, or scalable é—~— || l(u"(,\\ [ I
What else?

©Emily Fox 2014 8




Problem 2: Unknown Number of Features

——
"
m For example, hag-of-words features for text data: \M“Nl’

0 “Mary had a little lamb, little lamb...”

G 1 W 2 L O -
DNV S f

AN |
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Wady \\ah (] ‘\1@(\2 ! 'Mmlo'

= What's the dimensionality of x? 5122 of VJCW‘NY f""”“""<

m What if we see new word that was not in our vocabulary?
1 Obamacare

O Theoretically, just keep going in your learning, and initialize Wop,macare = 0
0 In practice, need to re-allocate memory, fix indices,... A big problem for Big Data
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What Next?
* S

m Hashing & Sketching!
1 Addresses both dimensionality issues and new features in one approach!

m Let’s start with a much simpler problem: Is a string in our vocabulary?

1 Membership query L Lok
m How do we keep track? Scan W WS

o Explicit list of strings

= Very slow . | ) [ .
1‘ Mml'/ W\t«'!j 'a'/ ‘h’ck\e/ 'Iamlo/ OLWVIA(N'Qj

1 Fancy Trees and Tries
= Hard to implement and maintain

[ Hash tables?

\A(‘Hary'): T ——— 'mry’,‘blowhﬁcarz’ﬁ
W (0bamacerd ): 7
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Hash Functions and Hash Tables
" JEE
m  Hash functions map keys to integers (bins): \,\; X ) {\,/yy\g

1 Keys can be integers, strings, objects,...

\Am/ﬁ:ﬂ\\\l\l\! L
—~— " T~

. m
m  Simple example: mod
0 h()=(ai+b)%m

L bell m:32
el > WM %R =T

1 Random choice of (a,b) (usually primes) — rav‘"om "“Sl'\ cc n
%F If inputs are uniform, bins are uniformly used

1 From two resylts can recover (a,b), so not pairwise independent -> Typically use fancier
hash functions (1) , W)

m  Hash table: [‘\ ( &MA {\'\"!S ‘c"f s a\\«tar/

1 Store list of objects in each bin

1 Exact, but storage still linear in size of object ids, which can be very long
N = E.g., hashing very long strings, entire documents
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Hash Bit-Vector Table-based
Membership Query

m  Approximate queries with one-sided error: Accept false positives only
1 If we say no, element is not in set
1 If we say yes, element is very to be likely in set

m  Given hash fp&itip‘nikeep tligg%or-\_/_of length m:
N‘. TS p—h{'ry!)=F .
Vz 11 SRR BWE ln;.{w.“'// v=0
u\/\’_

m
= Query Q(i): Element i in set?

SNY=0 2 Q)= no !
V)= =y Qf)z probebly YeS

m  Collisions:

w('Obrmacare’) =7 3y \J(h( Dlsmecere’) )2 V) |

ok 0\;4\.)’(\4\-60“ NoOYX \n ek

LC wt y
= Guarantee: One-sided errors, but may make many mistakes soaw ‘l'1,/y
1 How can we improve probability of correct answer? ?1 10‘)&-‘\‘1 ‘ CO“ES.'N\:__‘_
(22}
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Bloom Filter: Multiple Hash Tables
"
m Single hash table -> Many false positives

m Multiple hash tables with independent hash functions
Apply hy(i),..., ' t‘ﬂt,)i_ts_to_;l\ .
\\('Mu{)’;gﬂ:(JJ__]__\’-Sii_]_\_i.Af-l—-\;lt \,\|(‘0\,Wmm_ )-7
‘ ] ] -

Vg e AT DT Tn |, (‘Dlosmacore’)>

m Query Q(i)? florg’ Dbompcare
¥ V;) \\J(A':l w“;A‘ ' \,\| Lk ot ‘\Z
QL = very QroLa.(o(y yes

thye Q)= no -
m Significantly decrease probability of false positives

Analysis of Bloom Filter
" JEE
m Want to keep track of n elements with false positive
probability of 8>0... how large m &@? les
o Sy W

m Simple analysis yields: 'Z‘ﬁc
nlog, +
= log, -
=082 % . ash
0 Atcrms\ﬂj “’/‘ﬂ’ é\!\cr\S
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\ by mak kil longer
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Sketching Counts
* JEEE—
m Bloom Filter is super cool, but not what we need...

1 We don't just care about whether a featur i e, but to keep
track of counts of occurrences of features! (assuming x; integer)

m Recall the LR update: -l ) W X ”4(7“—?( ))
wi™ w4, {_Awgﬂ + 20y ® - p(y = 1)x®), w(t))]}

m Must keep track of (weighted) counts of each feature:
0 E.g., with sparse data, for each non-zero dimension j in x®:

For all entries of lash
' »m\hpl1 X% ac Lad w‘“ LY (I—’n‘l)\\

(or OJI X{*‘:{:O !4)
- Y = X, s (onst R ,,l{(yu),?(yrgl. ))

m Can we generalize'the Bloom Filter?
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Count-Min Sketch: single vector
" JEEE——

m  Simpler problem: Count how many times you see each strin ”ll’w‘l
m Single hash function: \,\ \ ’ \
1 Keep Count vector of length m —'1—' | 2
[ every time see string /: WA ,)é'\ W0bampBare') =7
Count[h(i)] < Count[h(7)] + 1
l
See ‘HN v D ( | 1
=) (ount|F |7 Haey') = Comnt¥
\Obompeare’ [ ] O‘( R4 )_ 1 J
01 Again, collisions could be a problem: =l >l
= ais the count of element |/ Hrj €S k 7
N - . roe
Cownnk [‘)] - La,, over- esk. (owndt

Z:In(i)‘j /
. A )
04) = ceturn a;scoun*[l\/«)]Za\.
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Count-Min Sketch: general case

" JEE
{
= Keep nt pAatrix pl\ m( Haory )

1 1 | B
! 1 el 1 T8
H‘otwcm) — L] 0 ‘\
fRaasis
A
| AT
= p hash functions: \\,\ ('mr.,') \\I\ ( Dlosmeoerre J
1 Just like in Bloom Filter, decrease errors with multiple hashes MP"'
[ Every time see string i K ﬂ‘ \APSL\ Cen
Vjie{l,...,p}: Count[j, hj(i)] < Count[j, h;(i)] +1
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Querying the Count-Min Sketch

" JEE
Vie{l,...,p}: Countlj, h;(i)] - Count[j, h;(i)] + 1

m Query Q(i)?
[ Whatis in Count[j k]?

COu.r\'(' k] Z a.
a: h( Yk

1 Thus:

Q)
60-6"‘ Cour\‘tfj, \f\[n)')7 a

1 Return:
r é min Courrt {j’\'\J(“ ’) 2 a;

* \ww\A

b oA apkest wpp4/

ooooooooooooo




Analysis of Count-Min Sketch

"
a; = min Countl[j, h(i)] > a;
j

m Set: |'€-‘ 1
m= |- = |In L
€ b [ 1 el P

\%% ok gack bosh A dof [ﬁﬂﬁ

m Then, after seeing n elements:

&l; f a; S a’#t@ \,\iﬂ'n ?roL. ﬁ‘{""‘enf

m With probability at least 1-0

Proof of Count-Min for Point Query with
Positive Counts: Part 1 — Expected Bound

[ |
= I, = indicator that i & k collide :
i41k) A (k) (D= hy
m Bounding expected value-
i z )= I (ke ::\ £ -é/
EDTan ) Pl h@hl))=L ¢ 5 o
[ X = total colliding mass on estlm e of count of| in hash j: ¢ounts
tount
m‘, Z w 1J|< '( COV'\‘E [J (4. ]" a"‘ + X;J
| m
Boundmg colllémg mf's\s‘su :}:'I-XS 4 ‘"“’y | JT\
Coll:din
EYX;'J} 2 %_ 2 ET5.) ¢ ',Leé. Count

m Thus, estimate from each hash function is close in expectation
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Proof of Count-Min for Point Query with Positive

Counts: Part 2 — High Probability Bounds
" JEE

> AEL2]
. L ond wse ind. of Z;
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m Applying to the Count-Min sketch:

But updates may be positive or negative
" JEE
wgtH) — wgt) + 0 {—)\wgt) + mz(-t) [y® — Py =1]xW, w(t))]}

=

—_—

[‘OS‘ or y\ea )

m  Count-Min sketch for positive & negative case 7
a; no longer necessarily positive

m Update the same: Observe change A, to element i:

Vie{l,...,p}: Count[j, hj(i)] < Countlj, h;(i)] + A,;

non.in{—z%e.r

=
@Countﬁ,ﬁi)] no longer an upperboun%
= How do we make a prediction? (ourt CLIIZ))
A hion counc [ h:la j Count]3, hsli))
Oz M ‘; n [‘)/ ) A /
= Bound: |d; — a;] < 3¢lal|; <= coune[2, hyf)

With probability at least 1-3'4, where ||a|||= % |a)l
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Finally, Sketching for LR
" S
W™ wl® o {2l + 20O - Py = 1x®, wh)]}

m Never need to know size of vocabulary!
m At every iteration, update Count—Mln matrix:

Yk Couwnt (k] = (173 )COun‘kCJ,l’]

(1\4_
VY, ' #0

¥y Countlj, by 1= Xioconse
n Maklngapredlctlo‘r)1 \-,n‘(y ‘F(Y:{")

Remembe, one <s¢. of W ) {vu-f%“"‘ Count 0y, LJ(;)]

medisn Count (i L S

- lo oAdS c w * L )
3 vvdo !

m Scales to huge problems, great practlcal implications...
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Nake ?ué

Hash Kernels
" JEEE

m  Count-Min sketch not designed for negative updates L'\I‘\L
m Biased estimates of dot products
oh & "‘J\

h: t like i t-Min hashi
m] Just like in Count-Min hashing l,‘ X-—‘, i‘ /

m  Hash Kernels: Very simple, but powerful idea to remove bias (N‘
= Pick 2 hash functions: f / ?"3{, )l

01 € : Sign hash function é *—3 ‘\' ( "5
= Removes the bias found in Count-Min hashing (ee homework)
X'.: ?
m Define a “kernel”, a pro&bctlon ¢ for x: o element of X Li\): y
Lod ?f €6 bin k(J) mx}, J

400 T LA Ol

o

b+ 2405 “
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Hash Kernels Preserve Dot Products
" S

¢i(x) = > E)x;

J:h(j)=i
m Hash kernels provide unbiased estimate of dot-products!

Eklt[(?(Y)‘¢(Y)] z X.y P(,' L‘/ [omework,

m Variance decreases as O(1/m) «—_ gMS betbor w/ more
dims
m Choosing m? For >0, if
(103 Jf>\ log n Juta si®
m=0[—=% 3 aca Si<€
€2
Under certain conditions...
Then, with probability at least 1-6:
(1—e)llx —x'|[3 < [[(x) — ¢(x)]]5 < (1 4 €)[|x —x'|[3
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