
1

1

Tackling an Unknown
Number of Features with
Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Emily Fox
January 14th, 2014

©Emily Fox 2014

Case Study 1: Estimating Click Probabilities

Ad Placement Strategies

n  Companies bid on ad prices

n  Which ad wins? (many simplifications here)
¨  Naively:

¨  But:

¨  Instead:

©Emily Fox 2014 2

2

Learning Problem for Click Prediction

n  Prediction task:

n  Features:

n  Data:

¨  Batch:

¨  Online:

n  Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision

trees, boosting,…)
¨  Focus on logistic regression; captures main concepts, ideas generalize to other approaches

©Emily Fox 2014 3

Logistic Regression
Logistic
function
(or Sigmoid):

n  Learn P(Y|X) directly
¨ Assume a particular functional form
¨ Sigmoid applied to a linear function

of the data:

Z

Features can be discrete or continuous!
4 ©Emily Fox 2014

3

5

Standard v. Regularized Updates

n  Maximum conditional likelihood estimate

n  Regularized maximum conditional likelihood estimate

©Emily Fox 2014

(t)

(t)

w

⇤
= argmax

w
ln

2

4
Y

j

P (yj |xj ,w))

3

5� �
X

i>0

w2
i

2

Stochastic Gradient Ascent for
Logistic Regression

n  Logistic loss as a stochastic function:

n  Batch gradient ascent updates:

n  Stochastic gradient ascent updates:
¨  Online setting:

©Emily Fox 2014 6

E
x

[`(w,x)] = E
x

⇥
lnP (y|x,w)� �||w||22

⇤

w

(t+1)
i w

(t)
i + ⌘

8
<

:��w
(t)
i +

1

N

NX

j=1

x

(j)
i [y(j) � P (Y = 1|x(j)

,w

(t))]

9
=

;

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

2

4

AdaGrad in Euclidean Space

n  For ,

n  For each feature dimension,

 where

n  That is,

n  Each feature dimension has it’s own learning rate!
¨  Adapts with t
¨  Takes geometry of the past observations into account
¨  Primary role of η is determining rate the first time a feature is encountered

©Emily Fox 2014 7

W = Rd

w(t+1)
i w(t)

i � ⌘t,igt,i

⌘t,i =

w(t+1)
i w(t)

i �
⌘qPt
⌧=1 g

2
⌧,i

gt,i

Problem 1: Complexity of Update
Rules for Logistic Regression

©Emily Fox 2014 8

n  Logistic regression update:

n  Complexity of updates:
¨  Constant in number of data points
¨  In number of features?

n  Problem both in terms of computational complexity and sample complexity

n  What can we with very high dimensional feature spaces?
¨  Kernels not always appropriate, or scalable
¨  What else?

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

5

Problem 2: Unknown Number of Features

n  For example, bag-of-words features for text data:
¨  “Mary had a little lamb, little lamb…”

n  What’s the dimensionality of x?
n  What if we see new word that was not in our vocabulary?

¨  Obamacare

¨  Theoretically, just keep going in your learning, and initialize wObamacare = 0
¨  In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

©Emily Fox 2014 9

What Next?
n  Hashing & Sketching!

¨  Addresses both dimensionality issues and new features in one approach!

n  Let’s start with a much simpler problem: Is a string in our vocabulary?
¨  Membership query

n  How do we keep track?
¨  Explicit list of strings

n  Very slow

¨  Fancy Trees and Tries
n  Hard to implement and maintain

¨  Hash tables?

©Emily Fox 2014 10

6

Hash Functions and Hash Tables
n  Hash functions map keys to integers (bins):

¨  Keys can be integers, strings, objects,…

n  Simple example: mod
¨  h(i) = (a.i + b) % m

¨  Random choice of (a,b) (usually primes)
¨  If inputs are uniform, bins are uniformly used
¨  From two results can recover (a,b), so not pairwise independent -> Typically use fancier

hash functions
n  Hash table:

¨  Store list of objects in each bin
¨  Exact, but storage still linear in size of object ids, which can be very long

n  E.g., hashing very long strings, entire documents

©Emily Fox 2014 11

Hash Bit-Vector Table-based
Membership Query

n  Approximate queries with one-sided error: Accept false positives only
¨  If we say no, element is not in set
¨  If we say yes, element is very to be likely in set

n  Given hash function, keep binary bit vector v of length m:

n  Query Q(i): Element i in set?
¨ 
¨ 

n  Collisions:

n  Guarantee: One-sided errors, but may make many mistakes
¨  How can we improve probability of correct answer?

©Emily Fox 2014 12

7

Bloom Filter: Multiple Hash Tables

n  Single hash table -> Many false positives

n  Multiple hash tables with independent hash functions
¨  Apply h1(i),…, hd(i), set all bits to 1

n  Query Q(i)?

n  Significantly decrease probability of false positives
©Emily Fox 2014 13

Analysis of Bloom Filter

n  Want to keep track of n elements with false positive
probability of δ>0… how large m & d?

n  Simple analysis yields:

©Emily Fox 2014 14

m =

n log2
1
�

ln 2

⇡ 1.5n log2
1

�

d = log2
1

�

8

Sketching Counts

n  Bloom Filter is super cool, but not what we need…
¨  We don’t just care about whether a feature existed before, but to keep

track of counts of occurrences of features! (assuming xi integer)

n  Recall the LR update:

n  Must keep track of (weighted) counts of each feature:

¨  E.g., with sparse data, for each non-zero dimension i in x(t):

n  Can we generalize the Bloom Filter?
©Emily Fox 2014 15

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Count-Min Sketch: single vector
n  Simpler problem: Count how many times you see each string
n  Single hash function:

¨  Keep Count vector of length m
¨  every time see string i:

¨  Again, collisions could be a problem:

n  ai is the count of element i:

©Emily Fox 2014 16

Count[h(i)] Count[h(i)] + 1

9

Count-Min Sketch: general case
n  Keep p by m Count matrix

n  p hash functions:
¨  Just like in Bloom Filter, decrease errors with multiple hashes
¨  Every time see string i:

©Emily Fox 2014 17

8j 2 {1, . . . , p} : Count[j, hj(i)] Count[j, hj(i)] + 1

Querying the Count-Min Sketch

n  Query Q(i)?
¨  What is in Count[j,k]?

¨  Thus:

¨  Return:

©Emily Fox 2014 18

8j 2 {1, . . . , p} : Count[j, hj(i)] Count[j, hj(i)] + 1

10

Analysis of Count-Min Sketch

n  Set:

n  Then, after seeing n elements:

n  With probability at least 1-δ

©Emily Fox 2014 19

âi = min
j

Count[j, h(i)] � ai

m =
le
✏

m

âi ai + ✏n

p =

⇠
ln

1

�

⇡

Proof of Count-Min for Point Query with
Positive Counts: Part 1 – Expected Bound

n  Ii,j,k = indicator that i & k collide on hash j:

n  Bounding expected value:

n  Xi,j = total colliding mass on estimate of count of i in hash j:

n  Bounding colliding mass:

n  Thus, estimate from each hash function is close in expectation
©Emily Fox 2014 20

11

Proof of Count-Min for Point Query with Positive
Counts: Part 2 – High Probability Bounds

n  What we know:

n  Markov inequality: For z1,…,zk positive iid random variables

n  Applying to the Count-Min sketch:

©Emily Fox 2014 21

E[Xi,j]
✏

e
n

P (8zi : zi > ↵E[zi]) < ↵�k

Count[j, hj(i)] = ai +Xi,j

But updates may be positive or negative

n  Count-Min sketch for positive & negative case
¨  ai no longer necessarily positive

n  Update the same: Observe change Δi to element i:

¨  Each Count[j,h(i)] no longer an upper bound on ai

n  How do we make a prediction?

n  Bound:
¨  With probability at least 1-δ1/4, where ||a|| = Σi |ai|

©Emily Fox 2014 22

|âi � ai| 3✏||a||1

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

8j 2 {1, . . . , p} : Count[j, hj(i)] Count[j, hj(i)] +�i

12

Finally, Sketching for LR

n  Never need to know size of vocabulary!
n  At every iteration, update Count-Min matrix:

n  Making a prediction:

n  Scales to huge problems, great practical implications…
©Emily Fox 2014 23

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Hash Kernels

n  Count-Min sketch not designed for negative updates
n  Biased estimates of dot products

n  Hash Kernels: Very simple, but powerful idea to remove bias
n  Pick 2 hash functions:

¨  h : Just like in Count-Min hashing

¨  ξ : Sign hash function
n  Removes the bias found in Count-Min hashing (see homework)

n  Define a “kernel”, a projection ϕ for x:

©Emily Fox 2014 24

13

Hash Kernels Preserve Dot Products

n  Hash kernels provide unbiased estimate of dot-products!

n  Variance decreases as O(1/m)

n  Choosing m? For ε>0, if

¨  Under certain conditions…
¨  Then, with probability at least 1-δ:

©Emily Fox 2014 25

(1� ✏)||x� x

0||22 ||�(x)� �(x0)||22 (1 + ✏)||x� x

0||22

m = O

log

N
�

✏2

!

�i(x) =
X

j:h(j)=i

⇠(j)xj

