Case Study 4: Collaborative Filtering

Graph-Parallel Problems

Synchronous v.
Asynchronous Computation

Machine Learning for Big Data
CSES47/STAT548, University of Washington

Emily Fox
February 20, 2014

ML in the Context of Parallel
ocﬁs”(j

Architectures ort. 9
- S w‘e%
e = A o

",
U

10y,
235«

amazon &
webservices™ %

»

GPUs Multicore Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
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Data distribution 10easS- --
Failures
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Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability 4"
Data distribution l
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:

Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...

Generally, you are still on your own WRT deWs

m  Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers

Higher-level: l\
= Map-Reduce (Hadoop: open-source version): mostly-data-parallel problems 5 "‘ ‘S

= GraphLab: for graph-structured distributed problems qua( ('
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Simplest Type of Parallelism:

. Data Parallel Problems
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m Problems that can be broken into independent subproblems are

called %arallel (or embarrassingly parallel)
m Map-Reduce is a great tool for this...

Focus of today’s lecture
but first a simple example
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Data Parallelism (MapReduce)

Solve a huge number of independent subproblems,
e.qg., extract features in images

Map-Reduce Abstraction
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50 Data-parallel over elements, e.g., documents
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= ‘“value” can be any data type
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m  Map-Reduce has long history in functional programming
1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
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Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase
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Issues with Map-Reduce Abstraction
* JEE
m Often all data gets moved around cluster
Very bad for iterative settings

m Definition of Map & Reduce functions can be
unintuitive in many apps
Graphs are challenging

m Computation is synchronous
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SGD for Matrix Factorization in

MaE-Reduce?

Lgfrll) (1- m)\u)Lﬁf) - nthRE;t)
Rq(;t+ ) (1 - ﬁt)\v) z(;t) - nthL&t)

€ = LS) . Rl(f) — Ty
m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key

m Here, one update at a time!
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Matrix Factorization as a Graph

The Celebration

S City of God

( % Wild Strawberries

La Dolce Vita

©Emily Fox 2014 10




Flashback to 1998

iy 2 !
altavista. Go\’g T

SEARCH SOFTWARE

First Google advantage:
a Graph Algorithm & a System to Support it!

Social Media Science Advertising Web

H £ a
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¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests
o Big: 100 billions of vertices and edges and rich metadata

o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges
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Facebook Graph

Data model
Objects & Associations

18429207554
(page)
fan
8636146 : b d 08/0 06
admin ay: 1961
(user) website: http://...
verified: 1
friend
likes
liked by friend
604191769
(user)

6205972929
(story)

Slide from Facebook Engineering p!
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Label a Face and Propagate
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Pairwise similarity not enough...

. Not similar enough
grandma to be sure

15
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Propagate Similarities & Co-occurrences
for Accurate Predictions

co-occurring
faces
M further evidence
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Example: Estimate Political Bias
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Topic Modeling (e.g., LDA)

click to LOOK INSIDE!
JOHNNY
APPLESEED

18
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ML Tasks Beyond Data-Parallelism

< Data-Parallel Graph-Parallel

Map Reduce
Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
Belief Propagation | abel Propagation
Computing Sufficient Variational Opt. CoEM
Statistics

Collaborative = Graph Analysis
Filtering ~ PageRank
Tensor Factorization Triangle Counting

19
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Example of a
Graph-Parallel
Algorithm
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Depends on rank
PageRank of who follows them...
Depends on rank J
of who follows her

b

What's the rank
of this user?

Loops in graph =» Must iterate! ”

PageRank Iteration

ﬁ /ﬁ Rlil|=a+ (1 —«a) Z wij; R[j]
(Ji)EE

e « isthe random reset probability
o w;is the prob. transitioning (similarity) from jto i 22
©Emily Fox 2014

11



Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation
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Friends Rank
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Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

\YET N[V« I Graph-Parallel Abstraction

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
) . Belief Propagation  Label Propagation
Computing Sufficient Variational Opt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization ~ Triangle Counting

24
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Graph Computation:

Synchronous
V.
Asynchronous

Bulk Synchronous Parallel Model:
Pregel (Giraph) [Valiant 90]

Compute Communicate

13



Big Data < >

Map-Reduce — Execution Overview

PN
Split data

-
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BSP — Execution Overview

P\
Split graph

C ogomm C O

Compute Phase

N

across machines

M1
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Communicate Phase
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Message machine
for every edge (vid,vid’,val)

(Vid o, Vid' o V) /
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Bulk synchronous
parallel model
provably inefficient
for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

focus here

- ©06000

[2)
30

important
influence
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Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

T T Algorithm identifies and focuses

on hidden sequential structure
Graphical Model

31

©Emily Fox 2014

Runtime in Seconds

BSP ML Problem:
Synchronous Algorithms can be Inefficient

10000
Bulk Synchronous (e.g., Pregel)
8000 /
6000 Theorem:
Asynchronous Splash BP Bulk Synchronous BP
4000 O(#tvertices) slower
2000 than Asynchronous BP

1 2 3 4 5 6 7 8
Number of CPUs

32
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Synchronous v. Asynchronous

m  Bulk synchronous processing: m  Asynchronous processing:

Computation in phases
= All vertices participate in a phase
Though OK to say no-op
= All messages are sent
Simpler to build, like Map-Reduce

= No worries about race conditions,
barrier guarantees data consistency

= Simpler to make fault-tolerant, save
data on barrier

Slower convergence for many ML
problems

In matrix-land, called Jacobi Iteration
Implemented by Google Pregel 2010

©Emily Fox 2014

Vertices see latest information from
neighbors

= Most closely related to sequential
execution

Harder to build:

= Race conditions can happen all the time

Must protect against this issue

= More complex fault tolerance

= When are you done?

= Must implement scheduler over vertices
Faster convergence for many ML
problems
In matrix-land, called Gauss-Seidel
Iteration

Implemented by GraphLab 2010, 2012
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