

Move Towards Higher-Level **Abstraction**

- Distributed computing challenges are hard and annoying!
 - Programmability
 - Data distribution
 - Failures
- High-level abstractions try to simplify distributed programming by hiding challenges:
 - □ Provide different levels of robustness to failures, optimizing data movement and communication, protect against race conditions...
 - ☐ Generally, you are still on your own WRT designing parallel algorithms
- Some common parallel abstractions:
 - □ Lower-level:
 - Pthreads: abstraction for distributed threads on single machine
 - MPI: abstraction for distributed communication in a cluster of computers
 - □ Higher-level:
 - Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
 - GraphLab: for graph-structured distributed problems

©Emily Fox 2014

Simplest Type of Parallelism: **Data Parallel Problems**

- You have already learned a classifier
- Z | y (il sign (w * . x (i)) |
- What's the test error?

 What's the test error?

 You have 10B labeled documents and 1000 machines

- Problems that can be broken into independent subproblems are called data-parallel (or embarrassingly parallel)
- Map-Reduce is a great tool for this...
 - □ Focus of today's lecture
 - □ but first a simple example

Issues with Map-Reduce Abstraction

- - Often all data gets moved around cluster
 - $\hfill\Box$ Very bad for iterative settings
 - Definition of Map & Reduce functions can be unintuitive in many apps
 - ☐ Graphs are challenging
 - Computation is synchronous

©Emily Fox 2014

SGD for Matrix Factorization in Map-Reduce?

- Map and Reduce functions???
- Map-Reduce:
 - □ Data-parallel over all mappers
 - □ Data-parallel over reducers with same key
- Here, one update at a time!

©Emily Fox 2014

Matrix Factorization as a Graph

Women on the Verge of a Nervous Breakdown

The Celebration

City of God

Wild Strawberries

La Dolce Vita

Flashback to 1998

First Google advantage: a **Graph Algorithm** & a **System to Support** it!

Social Media

Science

Advertising

Web

• Graphs encode the relationships between:

People Products Ideas Facts Interests

- Big: 100 billions of vertices and edges and rich metadata
 - Facebook (10/2012): 1B users, 144B friendships
 - Twitter (2011): 15B follower edges

©Emily Fox 2014

12

ML Tasks Beyond Data-Parallelism

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction Cross Validation

Computing Sufficient Statistics

Graphical Models Semi-Supervised
Gibbs Sampling Learning

Gibbs Sampling
Belief Propagation
Variational Opt.

Learning
Label Propagation
CoEM

Collaborative Graph Analysis
Filtering PageRank
Tensor Factorization Triangle Counting

©Emily Fox 2014

19

Example of a Graph-Parallel Algorithm

Graph Computation:

Synchronous v. Asynchronous

Bulk synchronous parallel model provably inefficient for some ML tasks

Synchronous v. Asynchronous

- Bulk synchronous processing:
 - Computation in phases
 - All vertices participate in a phase
 Though OK to say no-op
 - All messages are sent
 - □ Simpler to build, like Map-Reduce
 - No worries about race conditions, barrier guarantees data consistency
 - Simpler to make fault-tolerant, save data on barrier
 - □ Slower convergence for many ML problems
 - □ In matrix-land, called Jacobi Iteration
 - □ Implemented by Google Pregel 2010

- Asynchronous processing:
 - □ Vertices see latest information from neighbors
 - Most closely related to sequential execution
 - Harder to build:
 - Race conditions can happen all the time
 Must protect against this issue
 - More complex fault tolerance
 - When are you done?
 - Must implement scheduler over vertices
 - Faster convergence for many ML problems
 - In matrix-land, called Gauss-Seidel Iteration
 - □ Implemented by GraphLab 2010, 2012

©Emily Fox 2014

33

Acknowledgements

Slides based on Carlos Guestrin's GraphLab talk

Emily Fox 2014

34