Case Study 4: Collaborative Filtering

Graph-Parallel Problems

Synchronous v.
Asynchronous Computation

Machine Learning for Big Data
CSES47/STAT548, University of Washington

Emily Fox
February 20, 2014

ML in the Context of Parallel
ocﬁs”(j

Architectures ort. 9
- S w‘e%
e = A o

",
U

10y,
235«

amazon &
webservices™ %

»

GPUs Multicore Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
Programmability f we'l! g0 C‘Aro\M‘)L\ Yrese
Data distribution 10easS- --
Failures

©Emily Fox 2014

Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability 4"
Data distribution l
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:

Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...

Generally, you are still on your own WRT deWs

m Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers

Higher-level: l\
= Map-Reduce (Hadoop: open-source version): mostly-data-parallel problems 5 "‘ ‘S

= GraphLab: for graph-structured distributed problems qua(('

©Emily Fox 2014 3

Simplest Type of Parallelism:

. Data Parallel Problems

*
m You have already learned a classifi?r W it i
\}
What's the test error? g7 = ""‘ Z ‘/ s 5“ (W -X)

= You have 10B labeled documer‘ﬁs alqd 1060 machines
bao

1
< I locall (omputin
\loﬂ () ey Zar on su 52&

\ng/ oF data

e pess

m Problems that can be broken into independent subproblems are

called %arallel (or embarrassingly parallel)
m Map-Reduce is a great tool for this...

Focus of today’s lecture
but first a simple example

©Emily Fox 2014 4

Data Parallelism (MapReduce)

Solve a huge number of independent subproblems,
e.qg., extract features in images

Map-Reduce Abstraction

n
a Map: Trensforms & 54&6\ thmtn-l-

50 Data-parallel over elements, e.g., documents
1 Generate (key,value) pairs
= ‘“value” can be any data type

)
fuw’,1? ('n“"/’, 1y
lp Ahig j.)t"“?“" : l\q W” |§
['Ahry! |

Es(p.mflt : worcl count

maP(Jof“W"*)
Cor word v doc
mit (u)orJ, ()

= Reduce: | Mg M“ VA‘ IMS" SSotiate] W/
1 Aggregate values for each key a l‘lj dnA
Must be commutatjve- iate operation apwayf

E Data-parallel over keys
[l Generate (key,value) pairs

cedua (', [1,17,0,0,127)

en\i{("W, 30>

\
Re 1'4 ce(, wofA J Countt|ist fm“JJ
=0
for & in townd
C 4= Count fij

emik (wofA, ¢)

m Map-Reduce has long history in functional programming
1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Emily Fox 2014

Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

/\ (ky,v4) (kq,v4)

/ M1 T2 (k,,v,) ‘ 7 (kov)

U (kyvy) oL (K3,v3)

M2 _’(k Vo) € "~ —>

3 20V2 >3 (Kq,V4)
£ < 3¢ 2
& 8 El-
Q128 <8
L2 B E

m <
(KqmyVq) (Ks,V5)
U 0 [(v, (ko)

©Emily Fox 2014 7

Issues with Map-Reduce Abstraction
* JEE
m Often all data gets moved around cluster
Very bad for iterative settings

m Definition of Map & Reduce functions can be
unintuitive in many apps
Graphs are challenging

m Computation is synchronous

©Emily Fox 2014 8

SGD for Matrix Factorization in

MaE-Reduce?

Lgfrll) (1- m)\u)Lﬁf) - nthRE;t)
Rq(;t+) (1 - ﬁt)\v) z(;t) - nthL&t)

€ = LS) . Rl(f) — Ty
m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key

m Here, one update at a time!

©Emily Fox 2014 9

Matrix Factorization as a Graph

The Celebration

S City of God

(% Wild Strawberries

La Dolce Vita

©Emily Fox 2014 10

Flashback to 1998

iy 2 !
altavista. Go\’g T

SEARCH SOFTWARE

First Google advantage:
a Graph Algorithm & a System to Support it!

Social Media Science Advertising Web

H £ a
v ¢ W

¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests
o Big: 100 billions of vertices and edges and rich metadata

o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges

©Emily Fox 2014

12

Facebook Graph

Data model
Objects & Associations

18429207554
(page)
fan
8636146 : b d 08/0 06
admin ay: 1961
(user) website: http://...
verified: 1
friend
likes
liked by friend
604191769
(user)

6205972929
(story)

Slide from Facebook Engineering p!

©Emily Fox 2014

resentationq 3

Label a Face and Propagate

©Emily Fox 2014

14

Pairwise similarity not enough...

. Not similar enough
grandma to be sure

15

©Emily Fox 2014

Propagate Similarities & Co-occurrences
for Accurate Predictions

co-occurring
faces
M further evidence

16

Example: Estimate Political Bias

)

e O

©Emily Fox 2014

Topic Modeling (e.g., LDA)

click to LOOK INSIDE!
JOHNNY
APPLESEED

18

©Emily Fox 2014

ML Tasks Beyond Data-Parallelism

< Data-Parallel Graph-Parallel

Map Reduce
Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
Belief Propagation | abel Propagation
Computing Sufficient Variational Opt. CoEM
Statistics

Collaborative = Graph Analysis
Filtering ~ PageRank
Tensor Factorization Triangle Counting

19
©Emily Fox 2014

Example of a
Graph-Parallel
Algorithm

10

Depends on rank
PageRank of who follows them...
Depends on rank J
of who follows her

b

What's the rank
of this user?

Loops in graph =» Must iterate! ”

PageRank Iteration

ﬁ /ﬁ Rlil|=a+ (1 —«a) Z wij; R[j]
(Ji)EE

e « isthe random reset probability
o w;is the prob. transitioning (similarity) from jto i 22
©Emily Fox 2014

11

Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation

/ l\(ﬁ\’lx\& / i

=N

A

Friends Rank

23

©Emily Fox 2014

Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

\YET N[V« I Graph-Parallel Abstraction

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
) . Belief Propagation Label Propagation
Computing Sufficient Variational Opt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization ~ Triangle Counting

24
©Emily Fox 2014

12

Graph Computation:

Synchronous
V.
Asynchronous

Bulk Synchronous Parallel Model:
Pregel (Giraph) [Valiant 90]

Compute Communicate

13

Big Data < >

Map-Reduce — Execution Overview

PN
Split data

-

©Emily Fox 2014

Map Phase Shuffle Phase
(k1,v4)
/ M k) ‘
_)(k1’vV1’) ., R
g/’ M2 (kz,v2) S ;?:g_/
£ SRS
: 2.
2%
S el S ®
© A % I
(2]
<
(V)
M1000 > (K., V.

Reduce Phase

(kpovy)
— (ky.v)

(KanVs)
= (ko.v,)

(ks:Vs)
— (kove)

27

BSP — Execution Overview

P\
Split graph

C ogomm C O

Compute Phase

N

across machines

M1

(vidy,vid'; v4)

Communicate Phase

\

M2

(vidy,vid’y vy)

v

M1000

(vidy,,vid', v,) T

(vidy,vid'y vy) G

(vidgw,vid'yn Vo)

Message machine
for every edge (vid,vid’,val)

(Vid o, Vid' o V) /

©Emily Fox 2014

28

14

Bulk synchronous
parallel model
provably inefficient
for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

focus here

- ©06000

[2)
30

important
influence

©Emily Fox 2014

30

15

Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

T T Algorithm identifies and focuses

on hidden sequential structure
Graphical Model

31

©Emily Fox 2014

Runtime in Seconds

BSP ML Problem:
Synchronous Algorithms can be Inefficient

10000
Bulk Synchronous (e.g., Pregel)
8000 /
6000 Theorem:
Asynchronous Splash BP Bulk Synchronous BP
4000 O(#tvertices) slower
2000 than Asynchronous BP

1 2 3 4 5 6 7 8
Number of CPUs

32

©Emily Fox 2014

16

Synchronous v. Asynchronous

m Bulk synchronous processing: m Asynchronous processing:

Computation in phases
= All vertices participate in a phase
Though OK to say no-op
= All messages are sent
Simpler to build, like Map-Reduce

= No worries about race conditions,
barrier guarantees data consistency

= Simpler to make fault-tolerant, save
data on barrier

Slower convergence for many ML
problems

In matrix-land, called Jacobi Iteration
Implemented by Google Pregel 2010

©Emily Fox 2014

Vertices see latest information from
neighbors

= Most closely related to sequential
execution

Harder to build:

= Race conditions can happen all the time

Must protect against this issue

= More complex fault tolerance

= When are you done?

= Must implement scheduler over vertices
Faster convergence for many ML
problems
In matrix-land, called Gauss-Seidel
Iteration

Implemented by GraphLab 2010, 2012

33

Acknowledgements
" S

m Slides based on Carlos Guestrin’s GraphLab talk

©Emily Fox 2014

34

17

