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Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability 4"
Data distribution l
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:

Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...

Generally, you are still on your own WRT deWs

m  Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine

= MPI: abstraction for distributed communication in a cluster of computers
Higher-level: l\
W = Map-Reduce (Hadoop: open-source version): mostl "‘ ‘
V\b ‘—? = GraphLab: for graph-: ured distribu prQblems ua(ker
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Simplest Type of Parallelism:

. Data Parallel Problems

*
m You have already learned a classifi?r ‘A’
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What's the test error?  prr = ""‘ ‘/bl s‘ﬁh (W X )
= You have 10B labeled documer‘ﬁs alqd 1060 machines
bao

1
< - - 'ota" (omputin
\M( ) u’ryar on svﬁg&

\BA\WZ/ oF dita

e pess

m Proble hat-can be broken i i 0 s are
called @i or embarrassingly parallel)
m  Map-Reduce jg,a.great tool for this...

Focus of teday’s lecture
but first a simple example
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Data Parallelism (MapReduce)

Solve a huge number of independent subproblems,
e.qg., extract features in images

Map-Reduce Abstraction
|
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m  Map-Reduce has long history in functional programming

1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
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Map-Reduce — Execution Overview
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Issues with Map-Reduce Abstraction
" SN

m Often all data gets moved around cluster le
Very bad for iterative settings Kin s;;ﬁm

m Definition of Map & Reduce functions can be

unintuitive in many apps
Graphs are challenging

m Computation is synchronous

©Emily Fox 2014 8




SGD for Matrix Factorization in

MaE-Reduce?

Lgfﬂl) (1- m)\u)Lﬁf) - nthRE;t)
Rq(;t+ ) (1 - Ut)\v) z()t) - UthLgbt)

€ = LS) . Rl(f) — Ty
m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key
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Matrix Factorization as a Graph
- —_
&)

[{‘ Women
Jilig Women on the Verge of a

mﬂg Nervous Breakdown
o

The Celebration

S City of God

7 Wild Strawberries

La Dolce Vita

M movieS

©Emily Fox 2014 10




Flashback to 1998
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altavista. Google!

SEARCH SOFTWARE

First Google advantage:
a Graph Algorithm & a System to Support it!
Ny prae ronk.”
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Social Media Science Advertising Web

y © B

¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests
o Big: 100 billions of vertices and edges and rich metadata

o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges
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Facebook Graph

Data model wort than jusk  Hicnd Hriend

. . inttrag 68
Objects & Associations actions
6429207554
fan 2

'name: Barack obama IR
@ 2dmin birthday: 08/04/1961
user O..\ website: http://... vhou teg

/ { verified: 1
friend
likes \
liked by fri
604191769
620597292
(story)

Slide from Facebook Engineering presentation] 3
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