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Case Study 3: fMRI Prediction 

fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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fMRI 
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Functional MRI 

fMRI 
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functional Magnetic Resonance Imaging (fMRI) 

~1 mm resolution 

~1 image per sec. 

20,000 voxels/image 

safe, non-invasive 

measures Blood 

Oxygen Level 

Dependent (BOLD) 

response 

Typical fMRI 

response to 

impulse of 

neural activity 

10 sec 
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Typical Stimuli 
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Typical stimuli 

Each stimulus 

repeated several 

times 

fMRI Activation 
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fMRI activation for “bottle”: 

Mean activation averaged over 60 different stimuli: 

“bottle” minus mean activation: 

fMRI 

activation  

high 

below 

average 

average 

bottle 
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fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 
n  Challenges:  

¨  p >> N (feature dimension >> sample size) 
¨  Cost of fMRI recordings is high 
¨  Only have a few training examples for each word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Zero-Shot Classification 
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n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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Zero-Shot Classification 
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n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

n  We don’t have many brain images, but we have a lot of info 
about the words and how they relate (co-occurrence, etc.) 

n  How do we utilize this “cheap” information? 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Semantic Features 
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Semantic feature values: “celery” 

 0.8368, eat  

 0.3461, taste 

 0.3153, fill 

 0.2430, see  

 0.1145, clean 

 0.0600, open 

 0.0586, smell 

 0.0286, touch 

 … 

 … 

 0.0000, drive 

 0.0000, wear 

 0.0000, lift 

 0.0000, break 

 0.0000, ride 

Semantic feature values: “airplane” 

 0.8673, ride 

 0.2891, see 

 0.2851, say 

 0.1689, near   

 0.1228, open 

 0.0883, hear 

 0.0771, run 

 0.0749, lift 

 … 

 … 

 0.0049, smell 

 0.0010, wear 

 0.0000, taste 

 0.0000, rub 

 0.0000, manipulate 
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Zero-Shot Classification 
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n  From training data, learn two mappings: 
¨  S: input image à semantic features 
¨  L: semantic features à word 

n  Can use “cheap” co-occurrence data to help learn L 

Features 
of word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 


