
1 

1 

Review:  
Mixtures of Gaussians 

Machine Learning for Big Data 
CSE547/STAT548, University of Washington 

Emily Fox 
January 28th, 2014 

©Emily Fox 2014 

Case Study 2: Document Retrieval 

Some Data 
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Gaussian Mixture Model 
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n  Most commonly used mixture model 
n  Observations: 

n  Parameters: 

n  Cluster indicator: 

n  Per-cluster likelihood: 

n  Ex.      = country of origin,      = height of ith person 
¨  kth mixture component = distribution of heights in country k 
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Generative Model 

n  We can think of sampling observations  
from the model 

 
n  For each observation i, 

¨  Sample a cluster assignment 

¨  Sample the observation from the  
selected Gaussian 
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Also Useful for Density Estimation 

Contour Plot of Joint Density 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Contour Plot of Joint Density 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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p(xi | ⇡, µ,⌃) =
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Summary of GMM Components 
n  Observations 

n  Hidden cluster labels 

n  Hidden mixture means 

n  Hidden mixture covariances 

n  Hidden mixture probabilities 

xi 2 Rd
, i = 1, 2, . . . , N

µk 2 Rd, k = 1, 2, . . . ,K

zi 2 {1, 2, . . . ,K}, i = 1, 2, . . . , N

⌃k 2 Rd⇥d, k = 1, 2, . . . ,K

⇡k,
KX

k=1

⇡k = 1

Gaussian mixture marginal and conditional likelihood : 

p(xi | ⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi | µzi ,⌃zi)

p(xi | zi,⇡, µ,⌃) = N (xi | µzi ,⌃zi)
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Case Study 2: Document Retrieval 

Task 2: Cluster Documents 

©Emily Fox 2014 10 

n  Now: 
¨ Cluster documents based on topic 
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Document Representation 
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n  Bag of words model 

document d 

A Generative Model 
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n  Documents: 
n  Associated topics:  
n  Parameters: ✓ = {⇡,�}
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A Generative Model 
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n  Documents: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 

✓ = {⇡,�}

⇡
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zd

wd
i

K

Nd
D

x
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, . . . , x

D

z1, . . . , zD

Form of Likelihood 
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n  Conditioned on topic... 

n  Marginalizing latent topic assignment: 

p(xd | zd,�) =

p(xd | �,⇡) =
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Case Study 2: Document Retrieval 

Learning Model Parameters 

n  Want to learn model parameters 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Mixture of 3 Gaussians 
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ML Estimate of Mixture Model Params 
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n  Log likelihood 

 
n  Want ML estimate 

n  Assume exponential family 

n  Neither convex nor concave and local optima 

L

x

(✓) , log p({xi} | ✓) =
X

i

log

X

z

i

p(x

i

, z

i | ✓)

p(x, z | ✓) = 1

Z(✓)
e

✓

0
�(x,z)

L
x

(✓) =

✓̂ML =

Complete Data 

n  Imagine we have an assignment of each xi to a cluster 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 
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by true cluster assignments 
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n  Assume class labels     were observed in addition to   

n  Compute ML estimates 
¨  Separates over clusters k! 

n  Example: mixture of Gaussians (MoG) 

If “complete” data were observed… 

zi x

i

L

x,z

(✓) =

X

i

log p(x

i

, z

i | ✓)

✓ = {⇡k, µk,⌃k}Kk=1

Cluster Responsibilities 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)
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rik = p(zi = k | xi
,⇡,�) =

20 
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n  Motivates a coordinate ascent-like algorithm: 
1.  Infer missing values      given estimate of parameters   
2.  Optimize parameters to produce new      given “filled in” data 
3.  Repeat 

 
n  Example: MoG (derivation soon… + HW) 

1.  Infer “responsibilities” 

2.  Optimize parameters 

Iterative Algorithm 

zi ✓̂
✓̂ zi

rik = p(zi = k | xi
, ✓̂

(t�1)) =

max w.r.t. ⇡k :

max w.r.t. �k :

22 

Gaussian Mixture Example: Start 
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After first iteration 

©Emily Fox 2014 

24 

After 2nd iteration 
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After 3rd iteration 
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After 4th iteration 
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After 5th iteration 
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After 6th iteration 
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After 20th iteration 
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n  More broadly applicable than just to mixture models 
considered so far 
 

n  Model: 

 
n  Interested in maximizing (wrt    ): 

n  Special case:  

Expectation Maximization (EM) – 
Setup 

x

y

✓

✓

p(x | ✓) =
X

y

p(x, y | ✓)

x = g(y)

observable – “incomplete” data 
not (fully) observable – “complete” data 
parameters 



16 

©Emily Fox 2014 31 

n  Initial guess: 
n  Estimate at iteration t:  
 
n  E-Step 
 

 Compute 

n  M-Step 
 

 Compute  
 
 
 

EM Algorithm 
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n  E-Step   Compute 
n  M-Step  Compute 

n  Consider            i.i.d.   
 
 
 

Example – Mixture Models 

U(✓,

ˆ

✓

(t)
) = E[log p(y | ✓) | x, ˆ✓(t)]

ˆ✓(t+1)
= argmax

✓
U(✓, ˆ✓(t))

y

i = {zi, xi}

Eqt [log p(y | ✓)] =
X

i

Eqt [log p(x
i
, z

i | ✓)] =

p(xi
, z

i | ✓) = ⇡zi
p(xi | �zi) =
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n  In mixture model case where    there are 
many ways to initialize the EM algorithm 
 

n  Examples: 
¨  Choose K observations at random to define each cluster.  

Assign other observations to the nearest “centriod” to form 
initial parameter estimates 

¨  Pick the centers sequentially to provide good coverage of data 
¨  Grow mixture model by splitting (and sometimes removing) 

clusters until K clusters are formed 
 

n  Can be quite important to convergence rates in practice 

Initialization 

y

i = {zi, xi}

What you need to know 

n  Mixture model formulation 
¨  Generative model 
¨  Likelihood 

n  Expectation Maximization (EM) Algorithm 
¨  Derivation 
¨  Concept of non-decreasing log likelihood 
¨  Application to standard mixture models 
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Case Study 2: Document Retrieval 

K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 
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K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…m} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
37 

zj  argmin
i

||µi � x

j ||22

µ(t+1)
i  argmin

µ

X

j:zj=i

||µ� x

j ||22
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Special case: spherical Gaussians 
and hard assignments 

n  If P(X|z=k) is spherical, with same σ for all classes: 

n  Then, compare EM objective with k-means: 

P(xi | zi = k)∝ exp − 1
2σ 2 x

i −µk

2#

$%
&

'(

P(zi = k,xi ) = 1
(2π )m/2 || Σk ||

1/2 exp −
1
2
xi −µk( )

T
Σk
−1 xi −µk( )#

$%
&

'(
P(zi = k)
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