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Gaussian Mixture Model
= JEE

m Observations:

Parameters:

= Most commonly used mixture model e
(=),

Cluster indicator:

Per-cluster likelihood:

m Ex. 2'= country of origin, L = height of it" person
k" mixture component = distribution of heights in country k

©Emily Fox 2014 3

Generative Model
= JEEE

from the model

m We can think of sampling observations e
(),

m For each observation /,
Sample a cluster assignment

Sample the observation from the
selected Gaussian
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Also Useful for Density Estimation
* JEE—

Contour Plot of Joint Density
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Density as Mixture of Gaussians

m Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians Contour Plot of Joint Density
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Density as Mixture of Gaussians

m Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

©Emily Fox 2014 7

Summary of GMM Components
S

m Observations r, €eRY i=1,2,...
m Hidden cluster labels z; € {1,2,..., K}, i=1,2,...
m Hidden mixture means Ui € RY, k=1,2,...
m Hidden mixture covariances ;. € RdXd, kE=1,2,...
m Hidden mixture probabilities Tk, Z T =

Gaussian mixture marginal and conditional likelihood :

K
p(xi | T M, Z) = Z ﬂ-zzN(xl | IUJZmEZi)

Zi:].

p(xl | Ziy T, [y Z) :N<xl | /’LZMEZz)
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Task 2: Cluster Documents
" JEE—
= Now:
Cluster documents based on topic

ooooooooooooo




Document Representation
* JEEE
m Bag of words model

-
il

I

document d
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A Generative Model
" JEE

m Documents:

m Associated topics:

m Parameters: 6 = {m, 5}
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A Generative Model
= JEE

= Documents: z',...,z" T

m Associated topics: z',...,z" ik

m Parameters: 0 = {m, 3} 24

m Generative model:
W, N

B
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Form of Likelihood
" S

m Conditioned on topic...
p(x? | 2%, 8) =

m Marginalizing latent topic assignment:

p(z?| B, ) =
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Learning Model Parameters

m Want to learn model parameters

Mixture of 3 Gaussians Our actual observations
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ML Estimate of Mixture Model Params

"
m Log likelihood
Ly(0) £ logp({z'} [ 0) =) log > p(a',2" | 0)

m Want ML estimate
GML _

1 /
o0 9(2)

m Assume exponential family p(z,z | 0) = 700)

Ly(0) =

m Neither convex nor concave and local optima
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Complete Data
" JEE—
= Imagine we have an assignment of each x' to a cluster
Our actual observations
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Complete data labeled
by true cluster assignments
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If “complete” data were observed...
" S

m Assume class labels 2’ were observed in addition to x*
L (0) = logp(a’, 2" | 0)

m Compute ML estimates
Separates over clusters k!

m Example: mixture of Gaussians (MoG) 0 = {my, ux, Ek}szl
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Cluster Responsibilities
" JEE—

m We must infer the cluster assignments from the observations

m Posterior probabilities of
1 assignments to each cluster
*given* model parameters:

rig=p(z' =k | 2", 7 ¢) =
0.5

0 0.5 1
Soft assignments to clusters
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Iterative Algorithm
"

m Motivates a coordinate ascent-like algorithm:
Infer missing values 2 given estimate 9f parameters () .
Optimize parameters to produce new ) given “filled in” data z*
Repeat

m Example: MoG (derivation soon... + HW)
Infer “responsibilities”

rie = p(z' =k | xi,é(tfl)) =

Optimize parameters
max w.r.t. my :
max w.r.t. ¢y :
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After first iteration
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After 2nd iteration
= JEE
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After 3rd iteration
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After 5th iteration
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After 20th iteration
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Expectation Maximization (EM) —
Setup

m More broadly applicable than just to mixture models
considered so far

m Model: x observable — “incomplete” data
Y not (fully) observable — “complete” data
@ parameters

m Interested in maximizing (wrt 6):
plx]0)=> plx,yl0)
Y
m Special case:

r = g(y)
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EM Algorithm
" S

m Initial guess:
m Estimate at iteration t:

m E-Step

Compute

m M-Step

Compute
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Example — Mixture Models
" S

m E-Step Compute U(8,0") = Ellogp(y | 0) | =,0]
= M-Step Compute g+ :argmezle(H,é(t))

m Consider ' = {z%, 2"} i.id.
p(:ni, 2 | 0) = Wzip(.fi | i) =
El]t [Ing(y | 0)] = ZE% [logp(xi7zi | 9)] =
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Initialization
* JEEE
m In mixture model case where yi = {zi, xl} there are
many ways to initialize the EM algorithm

m Examples:

Choose K observations at random to define each cluster.
Assign other observations to the nearest “centriod” to form
initial parameter estimates

Pick the centers sequentially to provide good coverage of data

Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed

m Can be quite important to convergence rates in practice

©Emily Fox 2013 33

What you need to know
" JE
m Mixture model formulation

Generative model
Likelihood

m Expectation Maximization (EM) Algorithm
Derivation
Concept of non-decreasing log likelihood
Application to standard mixture models
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1.

2. Randomly guess k | %

3. Each datapoint finds | o.4

4. Each Center finds

= Auton’s Graphics &=

X
&N

K-means
¥

Ask user how many
clusters they’d like.
(e.g. k=5)

0.8

cluster Center
locations

out which Center it’s
closest to.

0,2
the centroid of the

points it owns

x0
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K-means
" JEE
m Randomly initialize k centers
u® =, © . n O

m Classify: Assign each point j&{1,...m} to nearest
center:
2 4= argmin ||u; —x7|[3

m Recenter: u, becomes centroid of its point:

t+1 . ;
p " e argmin 3 {lu—
jizi=i

Equivalent to u, < average of its points!
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Special case: spherical Gaussians

. and hard assignments

P(Z' =k,x')= ;exp[—l(xi -u )T > (xi -u )]P(zi =k)
’ Qm)™ Iz, 1" 2 A ¢
m If P(X|z=k) is spherical, with same o for all classes:

) ) 1 . 2
Px'l7 =k)°CeXP[— 207 "Xl _“"” ]

m Then, compare EM objective with k-means:
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