

Gaussian Mixture Model

- Most commonly used mixture model
 Observations: x1,..., x^N
- Parameters: mix weights

$$\Pi = [\Pi_1, ..., \Pi_K] \quad K \neq \text{ of clusters}$$

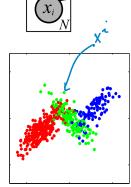
$$\Phi = {\{ \rho_k \}} = {\{M_k, \Sigma_k \}}$$

$$\bullet \quad \text{Cluster indicator: } \text{params for cluster } k$$

$$\Rightarrow \quad \text{Cluster indicator: } Pr(2^i = k) = \Pi_k$$

Per-cluster likelihood:

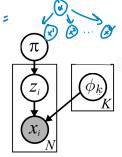
$$N(x^{i} \mid M_{k}, \sum_{k}, z^{i} = k)$$



Ex. z^i = country of origin, x^i = height of ith person \Box k^{th} mixture component = distribution of heights in country k

Generative Model

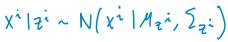
 We can think of sampling observations from the model



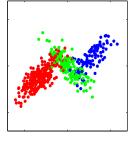
- For each observation i,

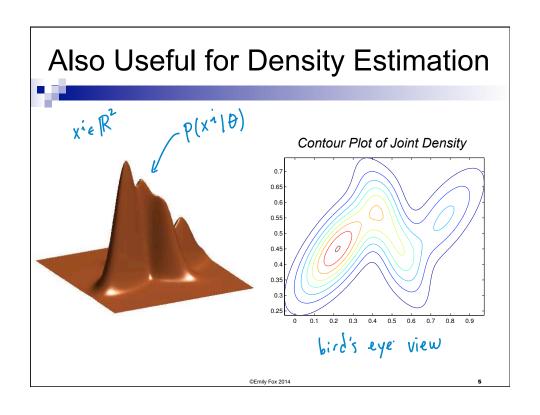
□ Sample a cluster assignment

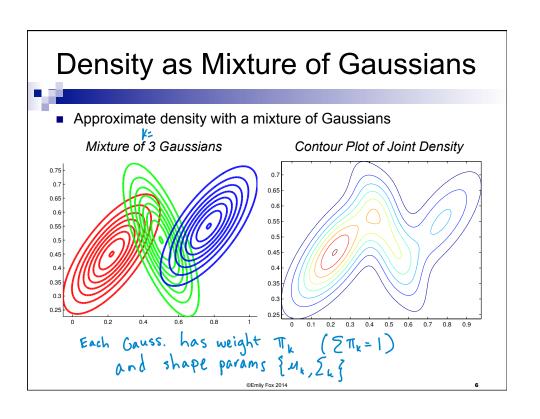
□ Sample the observation from the selected Gaussian



can "generate" obs.







Density as Mixture of Gaussians

Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma_k) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

$$p(x^i \mid \pi, \mu, \Sigma_k) = \sum_{k=1}^{\infty} \prod_{k=1}^{\infty} N(x^i \mid M_k, \Sigma_k)$$

Summary of GMM Components

$$x_i \in \mathbb{R}^d, \quad i = 1, 2, \dots, N$$

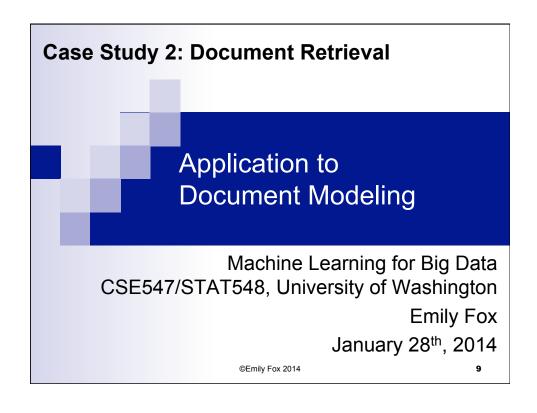
- ullet Hidden cluster labels $z_i \in \{1,2,\ldots,K\}, \quad i=1,2,\ldots,N$
- Hidden mixture means

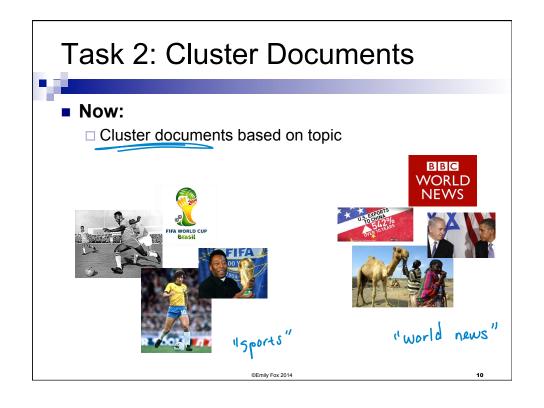
$$\mu_k \in \mathbb{R}^d, \quad k = 1, 2, \dots, K$$

- \bullet Hidden mixture covariances $\quad \Sigma_k \in \mathbb{R}^{d \times d}, \quad k = 1, 2, \dots, K$
- $\qquad \qquad \text{Hidden mixture probabilities} \qquad \qquad \pi_k, \quad \sum_{k=1}^K \pi_k = 1$

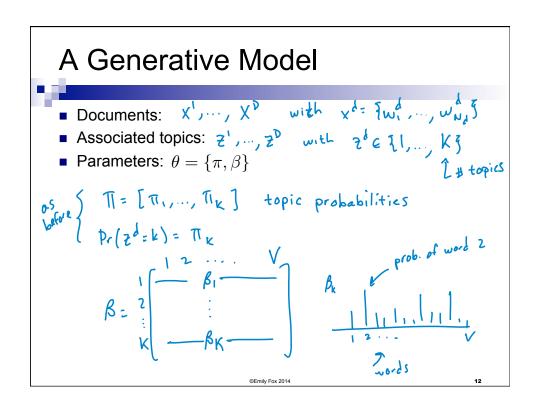
Gaussian mixture marginal and conditional likelihood:

$$\begin{split} p(x_i \mid \pi, \mu, \Sigma) &= \sum_{z_i = 1}^K \pi_{z_i} \mathcal{N}(x_i \mid \mu_{z_i}, \Sigma_{z_i}) \\ p(x_i \mid z_i, \pi, \mu, \Sigma) &= \mathcal{N}_{\text{\tiny (MEM)N Fox 2014}}(x_i \mid \mu_{z_i}, \Sigma_{z_i}) \end{split}$$



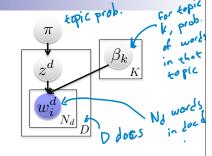


Document Representation Bag of words model previously: vector for of word counts (e.g. ef-idf) performed operations on this vector document of Now: X = { w₁, ..., w_{Nd} } indices unordered Set of Ns word with with vocab.



A Generative Model

- Documents: x^1, \dots, x^D
- Associated topics: z^1, \ldots, z^D
- Parameters: $\theta = \{\pi, \beta\}$
- Generative model:



Given topic 3d=k For doc d, draw each word

Form of Likelihood

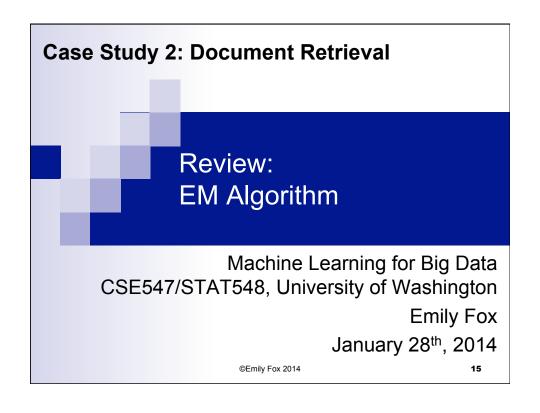
Conditioned on topic...

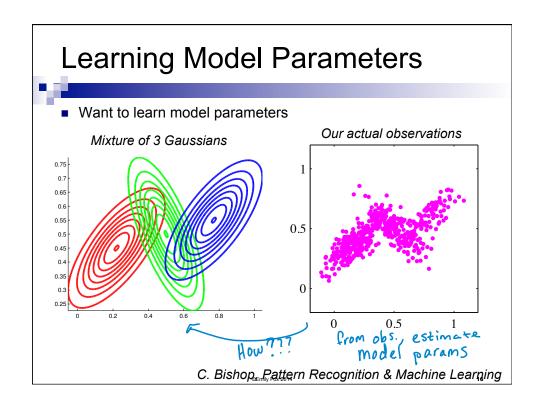
Conditioned on topic...
$$p(x^d \mid z^d, \beta) = \prod_{i=1}^{N_d} p(w_i^d \mid z^d, \beta) = \prod_{i=1}^{N_d} \beta_{z^d}, w_i^d$$
Marginalizing latent topic assignment:

Marginalizing latent topic assignment:

$$p(x^{d} \mid \beta, \pi) = \sum_{k=1}^{K} \pi_{k} p(x^{d} \mid z^{d} = k, \beta_{k})$$

$$P(z^{d} \mid k)$$





ML Estimate of Mixture Model Params

- $\text{Log likelihood} \\ L_x(\theta) \triangleq \log p(\{x^i\} \mid \theta) = \sum_i \log \sum_{z^i} p(x^i, z^i \mid \theta) \\ \text{introduce} \\ \text{introduce}$
 - Want ML estimate

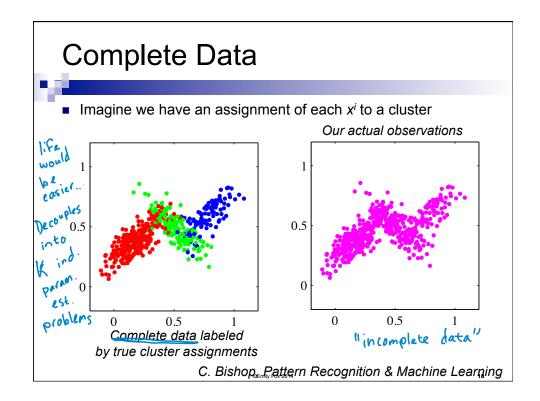
$$\hat{\theta}^{ML} = \underset{\hat{\Theta}}{\text{arg max}} L_{x}(\theta)$$

$$\hat{\theta}^{ML} = \underset{\hat{\theta}}{\text{arg max}} \underset{\hat{\theta}}{\text{max}} \underset{\hat{L}_{X}}{\text{L}_{X}}(\theta)$$

$$\blacksquare \text{ Assume exponential family } p(x, z \mid \theta) = \frac{1}{Z(\theta)} e^{\theta' \phi(x, z)}$$

$$L_{x}(\theta) = \underset{\hat{z}}{\text{L}} \log \left(\underset{\hat{z}}{\text{L}} e^{\theta' \phi(x, z)} \right) - \text{N} \log Z(\theta)$$

Neither convex nor concave and local optima



If "complete" data were observed...

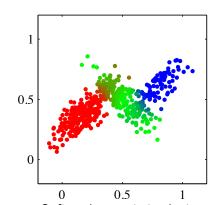
- Assume class labels z^i were observed in addition to x^i $L_{x,z}(\theta) = \sum \log p(x^i,z^i \mid \theta)$
- Compute ML estimates
 - □ Separates over clusters *k*!
- Example: mixture of Gaussians (MoG) $\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$

©Emily Fox 2014

19

Cluster Responsibilities

■ We must infer the cluster assignments from the observations



Posterior probabilities of assignments to each cluster *given* model parameters:

$$r_{ik} = p(z^{i} = k \mid x^{i}, \pi, \phi) =$$

$$= \frac{\pi_{k} p(x^{i} \mid \phi_{k})}{\sum \pi_{j} p(x^{i} \mid \phi_{j})}$$

Soft assignments to clusters
Motivates iterative algorithm

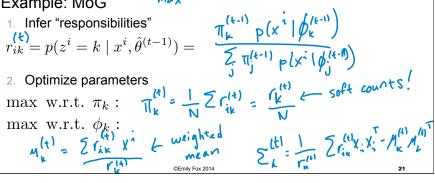
۱۰۹۰ N(x^اسن, کن)

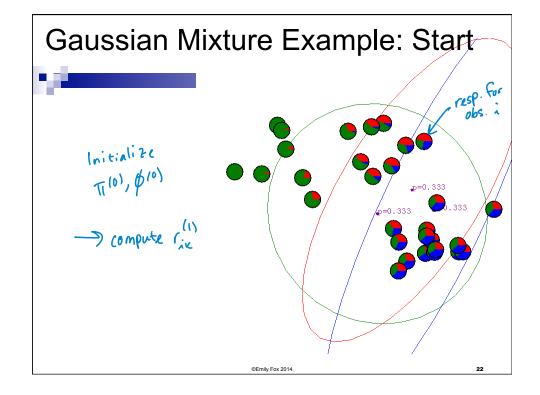
C. Bishop Pattern Recognition & Machine Learning

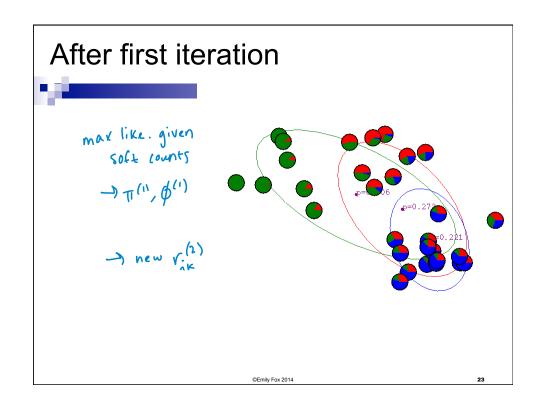
Iterative Algorithm

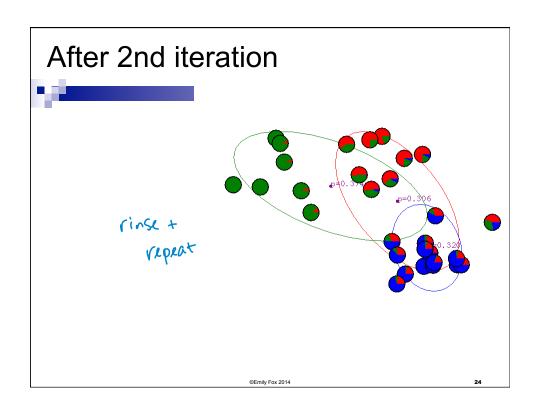
- Motivates a coordinate ascent-like algorithm:
 - 1. Infer missing values z^i given estimate of parameters $\hat{ heta}$
 - 2. Optimize parameters to produce new $\,\hat{ heta}\,$ given "fil<u>led in" d</u>ata z^i
 - 3. Repeat

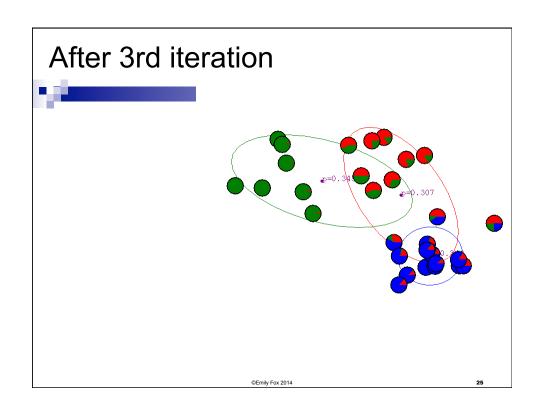
- Example: MoG

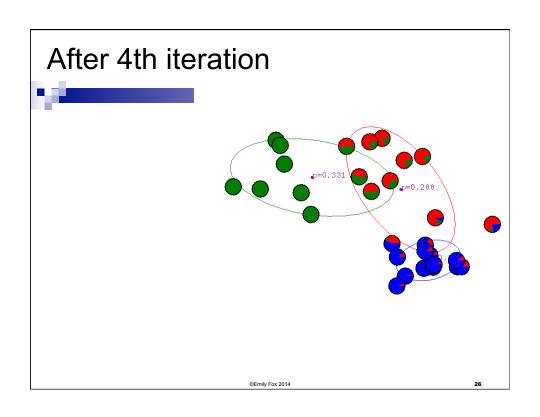


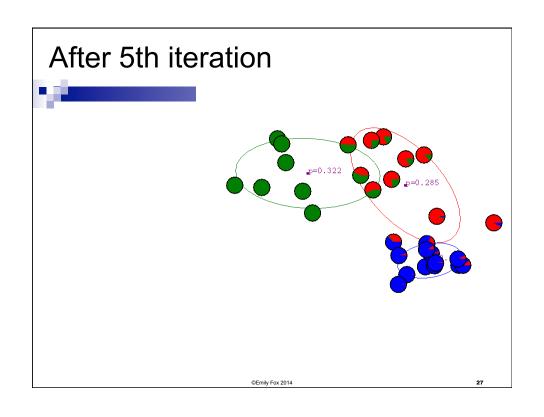


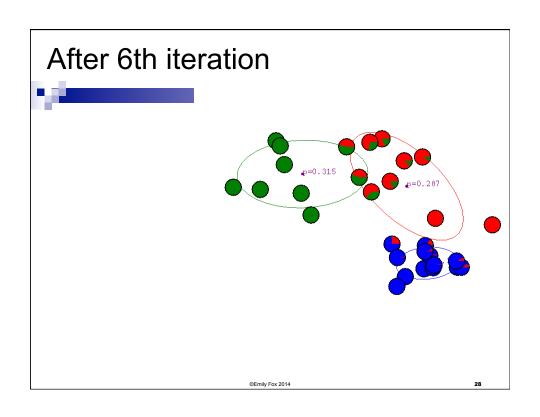


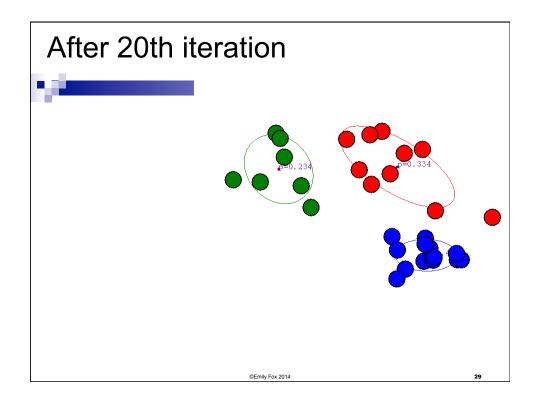




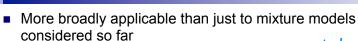








Expectation Maximization (EM) – Setup



- - y not (fully) observable "complete" data what we
 - heta parameters

■ Model: *x* observable – "incomplete" data

■ Interested in maximizing (wrt θ):

$$p(x \mid \theta) = \sum_{y} p(x, y \mid \theta)$$
 case:

Special case:

EM Algorithm

- Initial guess:
- Estimate at iteration t: (+)
- E-Step

mate at iteration
$$t$$
: $\hat{\theta}^{(t)}$

tep

Compute $U(\theta, \hat{\theta}^{(t)}) = E[\log p(y|\theta)| X, \hat{\theta}^{(t)}]$

■ M-Step

tep

Compute
$$\hat{\theta}^{(t+1)} = \underset{\theta}{\text{arg max}} U(\theta, \hat{\theta}^{(t)})$$

Example – Mixture Models

- <u>E-Step</u> Compute $U(\theta, \hat{\theta}^{(t)}) = E[\log p(y \mid \theta) \mid x, \hat{\theta}^{(t)}]$
- $\hat{\theta}^{(t+1)} = \arg\max_{\theta} U(\theta, \hat{\theta}^{(t)})$ ■ M-Step Compute

$$\begin{array}{l} \bullet \quad \text{Consider} \quad y^i = \{z^i, x^i\} \text{ i.i.d.} \quad \underbrace{\mathbb{K}}_{p(x^i, z^i \mid \theta) = \pi_{z^i} p(x^i \mid \phi_{z^i})} = \underbrace{\mathbb{I}}_{\mathbf{k} = \mathbf{l}} \left(\pi_{\mathbf{k}} p(\mathbf{x}^i \mid \phi_{\mathbf{k}})\right) \\ E_{q_t}[\log p(y \mid \theta)] = \sum_i E_{q_t}[\log p(x^i, z^i \mid \theta)] = \\ \end{array}$$

16

Initialization

- In mixture model case where $y^i = \{z^i, x^i\}$ there are many ways to initialize the EM algorithm
- Examples:
 - Choose K observations at random to define each cluster.
 Assign other observations to the nearest "centriod" to form initial parameter estimates
 - $\hfill \square$ Pick the centers sequentially to provide good coverage of data
 - ☐ Grow mixture model by splitting (and sometimes removing) clusters until K clusters are formed
- Can be quite important to convergence rates in practice

©Emily Fox 2013

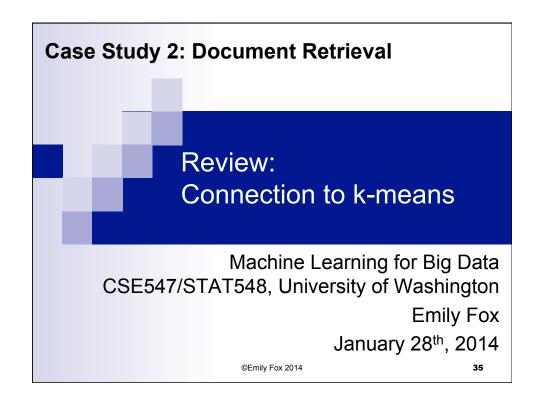
33

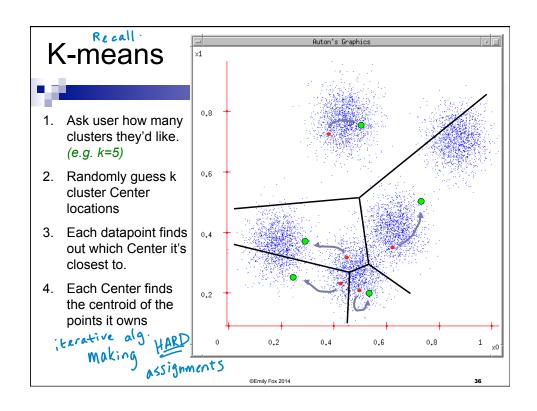
What you need to know

- Mixture model formulation
 - □ Generative model
 - □ Likelihood
- Expectation Maximization (EM) Algorithm
 - □ Derivation ← from prev. Ml /Stat comese
 - □ Concept of non-decreasing log likelihood
 - □ Application to standard mixture models

©Emily Fox 2014

34





K-means

Randomly initialize k centers

$$\square$$
 $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

■ Classify: Assign each point j∈{1,...m} to nearest center:

Recenter: μ_i becomes centroid of its point:

$$\square \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

 \square Equivalent to $\mu_i \leftarrow$ average of its points!

Special case: spherical Gaussians

$$P(z^{i} = k, \mathbf{x}^{i}|\mathbf{x}^{i}) = \frac{1}{(2\pi)^{d/2} \|\Sigma_{k}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}^{i} - \mu_{k})^{T} \Sigma_{k}^{-1}(\mathbf{x}^{i} - \mu_{k})\right] P(z^{i} = k)$$

$$P(\mathbf{x}^{i} \mid z^{i} = k) \propto \exp\left[-\frac{1}{2\sigma^{2}} \|\mathbf{x}^{i} - \mu_{k}\|^{2}\right]$$

Special case: spherical Gaussians and hard assignments

$$P(z^{i} = k, \mathbf{x}^{i}) = \frac{1}{(2\pi)^{d/2} \|\Sigma_{k}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}^{i} - \mu_{k})^{T} \Sigma_{k}^{-1}(\mathbf{x}^{i} - \mu_{k})\right] P(z^{i} = k)$$

If $P(X|z=k)$ is spherical, with same is for all classes:
$$P(\mathbf{x}^{i} \mid z^{i} = k) \propto \exp\left[-\frac{1}{2}\sigma^{2}\|\mathbf{x}^{i} - \mu_{k}\|^{2}\right]$$

Then, compare EM objective with k-means:
$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_$$