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Case Study 3: fMRI Prediction 

Coping with Large Covariances: 
Latent Factor Models, 
Graphical Models, 
Graphical LASSO 

Multivariate Normal Models 
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n  So far, we looked at univariate multiple regression 

n  If one has a multivariate response 
¨  Assuming independence between dimensions 

yi 2 Rd
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Multivariate Normal Models 
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n  If one has a multivariate response 
¨  Assuming correlation between the output dimensions 

 
n  Assume linear (or other mean regression) is removed and 

focus on the correlation structure 

 
n  Matrix valued parameter!   

yi 2 Rd

High-Dimensional Covariance 
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n  What if d is large?   

n  A few common approaches: 
¨  Low-rank approximations 
¨  Sparsity assumptions 
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Low-Rank Approximations 
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n  In general, assume some matrix parameter 

n  Here,     must be a symmetric, positive definite matrix  ⌃

Low-Rank Approximations 

n  In pictures… 

n  Number of parameters: 

⌃ = ⇤⇤0 + ⌃0

+=

⌃0 = diag(�2
1 , . . . ,�

2
d)
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Latent Factor Models 

n  Original multivariate regression 

n  Latent factor model assumption:   
n  Low-rank approximation arises from a latent factor model 

 
  

n  Proof: 

yi = B

T
x

i + ✏

i
, ✏

i ⇠ N(0,⌃)

⌃ = ⇤⇤0 + ⌃0
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Lower-dim Embeddings 

Sharing	
  informa,on	
  in	
  	
  
low-­‐dim	
  subspace	
  

Rk

Rd
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Sparsity Assumptions 
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n  What if we assume     is sparse? 

 
n  More often, we can reasonably make statements about 

conditional independence  

⌃

Information Form 
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n  Motivations for considering “information form” of multivariate 
normal 
¨  Easier to read off conditional densities 
¨  Has log-linear form in terms of “information parameters”  
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Conditional Densities 
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n  Assume a model with 

     and divide the dimensions into two sets 
 
n  Then, 

Conditional Densities 
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n  Let 

n  Therefore,   

A = {s, t}

p(yA | yĀ) = N�1(⌘A � ⌦AĀyĀ,⌦AA)
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n  Undirected graphical model or Markov random field (MRF) 

Connection with Graphical Models 
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p(y | ⌘,⌦) /
Y

t

 t(yt)
Y

(s,t)2E

 st(ys, yt)
 t(yt) / e⌘tyt

 st(ys, yt) / e�
1
2ys⌦styt

Sparse Precision vs. Covariance 
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n  For a sparse precision matrix, the covariance need not be 
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ML Estimation for Given Graph 
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n  Assume a known graph G = {V,E} 
n  Rewrite log likelihood: 

1p
2⇡|⌃|

e�
1
2 (y�µ)T⌃�1(y�µ)

ML Estimation for Given Graph 
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n  Take gradient: 

n  Many approaches to solving: 
¨  Barrier method – add penalty if      leaves the positive definite cone 

(Dahl et al. 2008) 
¨  Coordinate descent method (cf., Hastie et al. 2009) 
¨  …  

L(⌦) = log |⌦|� tr(S⌦)

⌦
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ML Estimation for Given Graph 
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n  Can show that the optimal solution satisfies 

 
 
n  Example: 

G =

0

BB@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1

CCA S =

0

BB@

10 1 5 4
1 10 2 6
5 2 10 3
4 6 3 10

1

CCA

⌃ =

0

BB@

10 1 4
1 10 2

2 10 3
4 3 10

1

CCA⌦ =

0

BB@

0
0

0
0

1

CCA

Estimating Graph Structure 
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n  To learn the structure of the Gaussian graphical  
model, we want to trade off fit and sparsity 
¨  Measure of fit: 

¨  Encouraging sparsity: 
 

n  Overall objective = “graphical LASSO” or “Glasso” 
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Solving the Graphical LASSO 
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n  Objective is convex, but non-smooth as in LASSO 
n  Also, positive definite constraint! 

n  There are many approaches to optimizing the objective 
¨  Most common = coordinate descent akin to shooting algorithm 

(Friedman et al. 2008) 

n  Some issues… 
¨  Ballpark: several minutes for a 1000-variable problem 
¨  Algorithms scale as O(d^3) 

n  Other approach = ADMM 

Faster Computations 
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Introduction

Faster Computations for the Graphical Lasso

Joint Estimation of Multiple Graphical Models

Future Work and Conclusions

Two Results

1. The jth variable is unconnected from all others in the
graphical lasso solution if and only if |Sij |  � for all
i = 1, . . . , j � 1, j + 1, . . . , p.

2. Let A denote the p ⇥ p matrix whose elements take the form
Aii = 1, Aij = 1|Sij |>�. Then the connected components of A
are the same as the connected components of the graphical
lasso solution.

We can obtain the exact right answer by solving the graphical lasso
on each connected component separately!

Citations: Witten et al. JCGS 2011, Mazumder and Hastie JMLR 2012
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From Daniela Witten’s talk at JSM 2012: 
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Covariance Screening for Glasso 
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Introduction

Faster Computations for the Graphical Lasso

Joint Estimation of Multiple Graphical Models

Future Work and Conclusions

Covariance-Screening for Graphical Lasso

I The solution to the graphical lasso problem with � = 0.7 has
five connected components (why 5?!)

I Perform graphical lasso on each component separately!

I Reduction in computational time: From O(503) to O(243).
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From Daniela Witten’s talk at JSM 2012: 


