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Case Study 3: fMRI Prediction 

Multivariate Normal Models 
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n  So far, we looked at univariate multiple regression 

n  If one has a multivariate response 
¨  Assuming independence between dimensions 

yi 2 Rd
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Multivariate Normal Models 
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n  If one has a multivariate response 
¨  Assuming correlation between the output dimensions 

 
n  Assume linear (or other mean regression) is removed and 

focus on the correlation structure 

 
n  Matrix valued parameter!   

yi 2 Rd

High-Dimensional Covariance 
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n  What if d is large?   

n  A few common approaches: 
¨  Low-rank approximations 
¨  Sparsity assumptions 
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Low-Rank Approximations 
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n  In general, assume some matrix parameter 

n  Here,     must be a symmetric, positive definite matrix  ⌃

Low-Rank Approximations 

n  In pictures… 

n  Number of parameters: 

⌃ = ⇤⇤0 + ⌃0

+=

⌃0 = diag(�2
1 , . . . ,�

2
d)
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Latent Factor Models 

n  Original multivariate regression 

n  Latent factor model assumption:   
n  Low-rank approximation arises from a latent factor model 

 
  

n  Proof: 

yi = B

T
x

i + ✏

i
, ✏

i ⇠ N(0,⌃)

⌃ = ⇤⇤0 + ⌃0
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Lower-dim Embeddings 

Sharing	
  informa,on	
  in	
  	
  
low-­‐dim	
  subspace	
  

Rk

Rd
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Sparsity Assumptions 
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n  What if we assume     is sparse? 

 
n  More often, we can reasonably make statements about 

conditional independence  

⌃


