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Case Study 5: Mixed Membership Modeling 

Variational Methods Goal 

©Emily Fox 2014 2 

n  Recall task: Characterize the posterior 

n  Turn posterior inference into an optimization task 
n  Introduce a “tractable” family of distributions over parameters 

and latent variables 
¨  Family is indexed by a set of “free parameters” 
¨  Find member of the family closest to: 
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Variational Methods Cartoon 
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n  Cartoon of goal: 

n  Questions: 
¨  How do we measure “closeness”? 
¨  If the posterior is intractable, how can we approximate something we do 

not have to begin with? 

Interpretations of Minimizing 
Reverse KL 
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n  Evidence lower bound (ELBO) 

n  Therefore, 
¨  ELBO provides a lower bound on marginal likelihood 
¨  Maximizing ELBO is equivalent to minimizing KL 

    

log p(x) = D(q(z, ✓)||p(z, ✓|x)) + L(q) � L(q)

L(q) = Eq[log p(z, ✓, x)]� Eq[log q(z, ✓)]
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Mean Field 
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n  How do we choose a Q such that the following is tractable? 
 
 
n  Simplest case = mean field approximation 

¨  Assume each parameter and latent variable is conditionally independent given 
the set of free parameters 

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

Original graph Naïve mean field 

L(q) = Eq[log p(z, ✓, x)]� Eq[log q(z, ✓)]

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

Mean Field – Optimize  
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n  Examine one free parameter, e.g.,  

¨  Look at terms of ELBO just depending on 

  

�

�

L� =

L(q) = Eq[log p(✓ | z, x)] + Eq[log p(z, x)]� Eq[log q(✓ | �)]�
X

i

Eq[log q(z
i | �i

)]

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

�
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Mean Field – Optimize  
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n  Examine another free parameter, e.g.,  

¨  Look at terms of ELBO just depending on 

n  This motivates using a coordinate ascent algorithm for optimization 
¨  Iteratively optimize each free parameter holding all others fixed 

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

L�i

=

L(q) = Eq[log p(z
i | z\i, ✓, x)] + Eq[log p(z\i, ✓, x)� Eq[log q(✓ | �)]�

X

i

Eq[log q(z
i | �i

)]

�i

�i

�i

Algorithm Outline 
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Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

(Mean Field) Variational Bayesian Learning 

ln p(x) = ln

✓Z

⇥

X

z

p(x, z | ✓)p(✓) d✓
◆

ln p(x) �
Z

⇥

X

z

qz(z)q✓(✓) ln

✓
p(x, z | ✓)p(✓)
qz(z)q✓(✓)

◆
d✓

ln p(x) �
Z

⇥

X

z

qz(z)q✓(✓) ln p(x, z, ✓) d✓ +H(qz) +H(q✓) , L(qz, q✓)

•  Initialization: Randomly select starting distribution 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 

q(0)✓

q(t)z = argmax

qz
L(qz, q(t�1)

✓ )

q(t)✓ = argmax

q✓
L(q(t)z , q✓)
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Mean Field for LDA 
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n  In LDA, our parameters are 

n  The variational distribution factorizes as 

n  The joint distribution factorizes as 

✓ = {⇡d}, {�k}
z = {zdi }

p(⇡,�, z, w) =
KY

k=1

p(�k | �)
DY

d=1

p(⇡d | ↵)
NdY

i=1

p(zdi | ⇡d)p(wd
i | zdi ,�)

Mean Field for LDA 
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n  Examine the ELBO 

q(⇡,�, z) =
KY

k=1

q(�k | ⌘k)
DY

d=1

q(⇡d | �d)
NdY

i=1

q(zdi | �d
i )
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KX
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Eq[log p(�k | �)] +
DX
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Eq[log p(⇡
d | ↵)]
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d=1

NdX

i=1

Eq[log p(z
d
i | ⇡d

)] + Eq[log p(w
d
i | zdi ,�)]

�
KX

k=1

Eq[log q(�k | ⌘k)]�
DX

d=1

Eq[log q(⇡
d | �d

)]�
dX

d=1

NdX

i=1

Eq[log q(z
d
i | �d

i )]

�k

wd
i

K

Nd

D

zdi

⇡d↵ �
⌘k

�d

�d
i

p(⇡,�, z, w) =
KY

k=1

p(�k | �)
DY

d=1

p(⇡d | ↵)
NdY

i=1

p(zdi | ⇡d)p(wd
i | zdi ,�)



6 

Mean Field for LDA 
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n  Let’s look at some of these terms 

 
 

n  Other terms follow similarly 
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Optimize via Coordinate Ascent 
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n  Algorithm: �k
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Optimize via Coordinate Ascent 
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n  Algorithm: �k

wd
i

K
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⇡d↵ �
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�d
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Generalizing 
n  Many Bayesian model have this form: 

n  Goal is to compute 

n  Assume each complete conditional is in the exponential family 
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N

✓

x

i

zi

p(✓, z1:N , x

1:N ) = p(✓)
NY

i=1

p(zi | ✓)p(xi | zi, ✓)

p(z

i | ✓, xi
) = h(z

i
) exp{⌘`(✓, xi

)

T
z

i � a(⌘`(✓, x
i
))}

p(✓ | z, x) = h(✓) exp{⌘g(z, x)T ✓ � a(⌘g(z, x))}
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Generalizing 
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N
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i
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n  Mean field variational approximation 

n  Match each component to have same family as model conditional 

n  Same for local variational terms, too 

q(z, ✓) = q(✓ | �)
NY

i=1

q(zi | �i)

p(✓ | z, x) = h(✓) exp{⌘g(z, x)T ✓ � a(⌘g(z, x))}

Generalizing 
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n  Under these exponential family assumptions, the gradient is: 

n  This leads to a simple coordinate update (Ghahramani and Beal, 2001) 

r�L = a

00(�)(E�[⌘g(z, x)]� �)
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General Coord. Ascent Algorithm 
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Mean-field variational inference

Initialize � randomly.
Repeat until the ELBO converges

1 For each data point, update the local variational parameters:

�
.t/
i D E�.t�1/ Œ⌘`.ˇ; xi/ç for i 2 f1; : : : ; ng:

2 Update the global variational parameters:

�.t/ D E�.t/ Œ⌘g.Z1Wn; x1Wn/ç:

✏ Inefficient: We analyze the whole data set before completing one iteration.

✏ E.g.: In iteration #1 we analyze all documents with random topics.

�

�

�

✓ N

NN
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Case Study 5: Mixed Membership Modeling 
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Limitations of Batch Variational Methods 
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Limitations of Batch Variational Methods 
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n  Example = LDA 
¨  Start from randomly initialized        (topics)  
¨  Analyze whole corpus before updating        again 

n  Streaming data: can’t compute one iteration!  

n  More generally…  
¨  Do some local computation for each data point.  
¨  Aggregate these computations to re-estimate global structure. 
¨  Repeat.  

n  Inefficient, and cannot handle massive data sets.  

⌘k
⌘k

�k
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Stochastic Variational Inference  
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n  Stochastic variational inference harnesses: 
 
¨  Idea #1: Stochastic optimization (Robbins and Monro, 1951)  

¨  Idea #2: Natural gradients (Amari, 1998) 

Stochastic variational inference

SUBSAMPLE 
DATA

INFER 
LOCAL 

STRUCTURE

UPDATE 
GLOBAL 

STRUCTURE

1 A generic class of models

2 Classical mean-field variational inference

3 Stochastic variational inference

4 Extensions and open issues

(Hoffman et al., 2013)

Alternative Optimization Schemes 
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n  Didn’t have to do coord. ascent.  Could have used gradient ascent. 

  
n  Here, 

n  Use stochastic gradient step instead 
¨  Consider one data point xt sampled uniformly at random and define: 

 

L(q) = Eq[log p(✓)]� Eq[log q(✓)]�
NX

i=1

Eq[log p(z
i
, x

i | ✓)]� Eq[log q(z
i
)]

Lt(q) = Eq[log p(✓)]� Eq[log q(✓)]�N(Eq[log p(z
t
, x

t | ✓)]� Eq[log q(z
t
)])
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Alternative Optimization Schemes 
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n  Recall the gradient of the ELBO for the global parameter: 

n  Even using just one data point, issue for scalability: 

r�L = a

00(�)(E�[⌘g(z, x)]� �)

Natural Gradient of the ELBO 
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Natural gradients RIEMANNIAN CONJUGATE GRADIENT FOR VB

!
"
#$%&'()*
+'(,%))'%)-#$%&'()*

Figure 1: Gradient and Riemannian gradient directions are shown for the mean of distribution q.
VB learning with a diagonal covariance is applied to the posterior p(x,y) ! exp[�9(xy�
1)2� x2� y2]. The Riemannian gradient strengthens the updates in the directions where
the uncertainty is large.

the conjugate gradient algorithm with their Riemannian counterparts: Riemannian inner products
and norms, parallel transport of gradient vectors between different tangent spaces as well as line
searches and steps along geodesics in the Riemannian space. In practical algorithms some of these
can be approximated by their flat-space counterparts. We shall apply the approximate Riemannian
conjugate gradient (RCG) method which implements Riemannian (natural) gradients, inner products
and norms but uses flat-space approximations of the others as our optimisation algorithm of choice
throughout the paper. As shown in Appendix A, these approximations do not affect the asymptotic
convergence properties of the algorithm. The difference between gradient and conjugate gradient
methods is illustrated in Figure 2.

In this paper we propose using the Riemannian structure of the distributions q("""|###) to derive
more efficient algorithms for approximate inference and especially VB using approximations with
a fixed functional form. This differs from the traditional natural gradient learning by Amari (1998)
which uses the Riemannian structure of the predictive distribution p(XXX |"""). The proposed method
can be used to jointly optimise all the parameters ### of the approximation q("""|###), or in conjunction
with VB EM for some parameters.

3239

(from Honkela et al., 2010)

✏ The natural gradient of the ELBO is

Or�L D E� Œ⌘g.Z ; x/ç � �:
✏ We can compute the natural gradient by computing the coordinate updates

in parallel and subtracting the current variational parameters. (Sato, 2001)

n  The natural gradient accounts for the geometry of parameter space 
n  Natural gradient of the ELBO: 
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Noisy Natural Gradients 
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n  Let                   be the conditional distribution of the global variable 
for the model where the observations are N replicates of xt  

n  With this, the noisy natural gradient of the ELBO is  

n  Notes: 
¨  It only requires the local variational parameters of one data point.  
¨  In contrast, the full natural gradient requires all local parameters. 
¨  Thanks to conjugacy it has a simple form.  

⌘t(z
t
, x

t)

SVI Algorithm Overview 

©Emily Fox 2014 27 

Stochastic variational inference

Initialize global parameters � randomly.
Set the step-size schedule ✏t appropriately.
Repeat forever

1 Sample a data point uniformly,

xt ⇠ Uniform.x1; : : : ; xn/:

2 Compute its local variational parameter,

� D E�.t�1/ Œ⌘`.ˇ; xt/ç:

3 Pretend its the only data point in the data set,
O� D E� Œ⌘t.Zt ; xt/ç:

4 Update the current global variational parameter,

�.t/ D .1 � ✏t/�
.t�1/ C ✏t

O�:

N

�

� ✓

�

� � �

N

✓

x

i

zi
�

�i
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n  In LDA, the full ELBO is given by 

n  Assuming D documents, consider one sampled at random 

L = Eq[log p(�)]� Eq[log q(�)]

+D
�
Eq[log p(⇡

t
)]� E[log q(⇡t

)]

�
Lt = Eq[log p(�)]� Eq[log q(�)]

+

DX

d=1

Eq[log p(z
d
, x

d | ⇡d
,�)]� Eq[log q(z

d
)]

+

DX

d=1

Eq[log p(⇡
d
)]� Eq[log q(⇡

d
)]

+D

�
Eq[log p(z

t
, x

t | ⇡t
,�)]� Eq[log q(z

t
)]

�

�k

wd
i

K

Nd
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zdi

⇡d↵ �
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�d
i

SVI for LDA 
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•  Initialize         randomly. 
•  Repeat (indefinitely): 

•  Sample a document d uniformly from the data set. 
•  For all k, initialize 
•  Repeat until converged 

•  For i=1,…,Nd 

•  Set  
 

•  Take a stochastic gradient step 

⌘(0)

�d
k = 1

�d = ↵+
NdX

i=1

�d
i

�d
ik / exp{E[log ⇡d

k] + E[log �k,wd
i
]}

�k

wd
i

K

Nd

D

zdi

⇡d↵ �
⌘k

�d

�d
i

SVI for LDA 

⌘(t) = ⌘(t�1) + ✏tr⌘Ld
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SVI for LDA in Practice 
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Stochastic variational inference
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(Hoffman et al. 2010)

What you need to know… 

n  Variational methods 
¨  Mean field for LDA 

n  Stochastic variational inference 
¨  General idea of using natural gradients + stochastic optimization 
¨  Resulting generic algorithm 
¨  SVI for LDA 
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Reading 

n  Inference in LDA: 
¨  Basic LDA and batch variational inference in LDA:  

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent 
dirichlet allocation." the Journal of machine Learning research 3 
(2003): 993-1022. 

¨  Stochastic variational inference:  
Hoffman, Matt, et al. "Stochastic Variational Inference." arXiv:
1206.7051 (2012). 
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n  Thanks to Dave Blei for some material in this lecture relating 
to SVI 
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Course Wrapup 
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What you need to know 

n  Case Study 1: Estimating Click Probabilities 
¨  Logistic regression 
¨  Regularization 
¨  Gradient descent, stochastic gradient decent 
¨  Hashing and sketching 

©Emily Fox 2014 
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What you need to know 

n  Case Study 2: Document Retrieval and Clustering 
¨  Approach 1: k-NN 
¨  Algorithm: Fast k-NN using KD-trees (exact) 
¨  Algorithm: Approximate k-NN using KD-trees and locality sensitive hashing 

¨  Approach 2: k-means 
¨  Data parallel problems 
¨  Algorithm: MapReduce framework and parallel k-means using MapReduce 

¨  Approach 3: Gaussian mixture models (GMM) 
¨  Algorithm: EM   

©Emily Fox 2014 
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What you need to know 

n  Case Study 3: fMRI Prediction 
¨  Regularized linear models: Ridge regression and LASSO 
¨  Sparsistency 
¨  LASSO solvers: 

n  LARS 
n  Shotgun (stochastic coordinate descent) 
n  Hogwild (stochastic gradient descent) 
n  Averaging methods 
n  ADMM 

¨  LASSO variants: 
n  Fused LASSO 
n  Graphical LASSO 

¨  Coping with large covariances using latent factor models 

©Emily Fox 2014 
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What you need to know 

n  Case Study 4: Collaborative Filtering 
¨  Approach: Matrix factorization 
¨  Algorithm: Alternating least squares (ALS) 
¨  Algorithm: Stochastic gradient descent (SGD) 

¨  Cold-start problem and feature-based collaborative filtering 

¨  Model variants: 
n  Non-negative matrix factorization 
n  Probabilistic matrix factorization 

¨  Algorithm: Gibbs sampling 
n  Probabilistic latent space models 

¨  Graph parallel problems 
¨  GraphLab framework and application to distributed ALS and Gibbs for 

matrix factorization 
©Emily Fox 2014 

39 

What you need to know 

n  Case Study 5: Document Mixed Membership Modeling 
¨  Approach 1: Bayesian document clustering model 
¨  Conditional independencies in directed graphical models 
¨  Algorithm: Gibbs sampling and collapsed Gibbs sampling 

¨  Approach 2: Latent Dirichlet allocation 
¨  Algorithm: Collapsed Gibbs sampling 
¨  Algorithm: Variational methods and stochastic variational inference 

©Emily Fox 2014 
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n You have been a great, interactive class! 
…especially for a 9:30am lecture =) 

n We’re looking forward to the poster session 

n Thanks to Alden and Chad, too! 

©Emily Fox 2014 

THANK YOU!!! 


