















| Se | lect a   | Docu  | ment            |        |        |   |
|----|----------|-------|-----------------|--------|--------|---|
|    | Etruscan | trade | price           | temple | market |   |
|    |          |       |                 |        |        |   |
|    |          |       |                 |        |        |   |
|    |          |       |                 |        |        |   |
|    |          |       | ©Emily Fox 2014 |        |        | 9 |

| Randomly Assign Topics         |          |       |                 |        |        |    |
|--------------------------------|----------|-------|-----------------|--------|--------|----|
| $z_i^d$                        | 3        | 2     | 1               | 3      | 1      |    |
| $\frac{\mathbf{v}}{w_{i}^{d}}$ | Etruscan | trade | price           | temple | market |    |
|                                |          |       |                 |        |        |    |
|                                |          |       |                 |        |        |    |
|                                |          |       | ©Fmily Fox 2014 |        |        | 10 |



| 3       | 2     | 1     | 3      | 1              |           |
|---------|-------|-------|--------|----------------|-----------|
| truscan | trade | price | temple | market         |           |
|         |       |       | Doc d  | opic 1 Topic 2 | 2 Topic 3 |



| Re      | sar             | np            | le  | Ass     | si | gnm            | e | nts        |             |         |             |  |  |
|---------|-----------------|---------------|-----|---------|----|----------------|---|------------|-------------|---------|-------------|--|--|
| $z_i^d$ | Etru            | 3<br>Etruscon |     | 3 2     |    | 2<br>rade      |   | 1<br>price | 3<br>tomplo |         | 1<br>market |  |  |
| $w_i^a$ |                 |               | - 1 | Tania   |    | Tania 2        | 1 | Docid      | Topic 1     | Topic 2 | Topic 3     |  |  |
| Etrusca | an              | 1 I I I       |     | Topic 2 | 0  | 1 Opic 3<br>35 |   | DOC U      | 2           | 1       | 2           |  |  |
| marke   | t               | 50            |     |         | 0  | 1              |   |            |             |         |             |  |  |
| price   |                 |               | 42  |         | 1  | 0              |   |            |             |         |             |  |  |
| temple  | temple          |               | 0   |         | 0  | 20             |   |            |             |         |             |  |  |
| trade   | rade            |               | 10  |         | 8  | 1              |   |            |             |         |             |  |  |
|         |                 |               |     |         |    |                |   |            |             |         |             |  |  |
|         | ©Emily Fox 2014 |               |     |         |    |                |   |            |             | 14      |             |  |  |

| What                     | is the c | ondition | al distri       | bution f | or this t | opic? |
|--------------------------|----------|----------|-----------------|----------|-----------|-------|
| $z_i^d$                  | 3        | ?        | 1               | 3        | 1         |       |
| $\frac{\mathbf{v}}{w^d}$ | Etruscan | trade    | price           | temple   | market    |       |
|                          |          |          |                 |          |           |       |
|                          |          |          | ©Emily Fox 2014 |          |           | 15    |











| Up      | dat  | e (    | Co | ount    | S |                |    |       |         |         |         |
|---------|------|--------|----|---------|---|----------------|----|-------|---------|---------|---------|
| $z_i^d$ | 3    |        | ?  |         | 1 | 3              |    |       | 1       |         |         |
| $w_i^d$ | Etru | ruscan |    | rade    |   | price          | te | emple | ma      | rket    |         |
|         |      |        |    |         |   |                | _  |       | Topic 1 | Topic 2 | Topic 3 |
|         |      | Торі   | :1 | Topic 2 | 2 | Topic 3        |    | Doc d | 2       | 0       | 2       |
| Etrusca | n    |        | 1  |         | 0 | 35             |    |       |         |         |         |
| market  |      |        | 50 |         | 0 | 1              |    |       |         |         |         |
| price   |      |        | 42 |         | 1 | 0              | 1  |       |         |         |         |
| temple  |      |        | 0  |         | 0 | 20             | 1  |       |         |         |         |
| trade   |      |        | 10 |         | 7 | 1              |    |       |         |         |         |
|         |      |        |    |         |   |                |    |       |         |         |         |
|         |      |        |    |         | © | Emily Fox 2014 | -  |       |         |         | 21      |









































| Generalizing log p                                                                                                                | $p(x) \ge \int q_z(z)q_\theta(\theta)\log \frac{p(x,z,\theta)}{q_z(z)q_\theta}dzd\theta$                                                                                                               |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <ul> <li>Condition 1: Complete data likelihood is in exponential family</li> </ul>                                                |                                                                                                                                                                                                        |  |  |  |  |  |  |
| <ul> <li>Condition 2: Parameter prior is conjugate to complete data likelihood</li> </ul>                                         |                                                                                                                                                                                                        |  |  |  |  |  |  |
| EM for MAP estimation                                                                                                             | variational Bayesian EM                                                                                                                                                                                |  |  |  |  |  |  |
| <b>Goal:</b> maximise $p(\boldsymbol{\theta}   \boldsymbol{X})$ w.r.t. $\boldsymbol{\theta}$                                      | <b>Goal:</b> lower bound $p(x)$                                                                                                                                                                        |  |  |  |  |  |  |
| <b>E</b> Step: compute $(1+1)$                                                                                                    | <b>VB-E Step:</b> compute $\phi^{(t)} = \mathbb{E}_{q_{\theta}^{(t)}}[\phi(\theta)]$                                                                                                                   |  |  |  |  |  |  |
| $q_z^{(t+1)}(z) = p(z \mid \boldsymbol{\mathcal{X}}, \boldsymbol{\theta}^{(t)})$                                                  | $q_z^{(t+1)}(z) = p(z \mid x, \overline{\phi}^{(t)})$                                                                                                                                                  |  |  |  |  |  |  |
| M Step:                                                                                                                           | VB-M Step:                                                                                                                                                                                             |  |  |  |  |  |  |
| $\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \int q_z^{(t+1)}(z) \ln p(z, \mathcal{X}, \boldsymbol{\theta}) dz$ | $q_{\boldsymbol{\theta}}^{(t+1)}(\boldsymbol{\theta}) \propto \exp\left \int q_z^{(t+1)}(\boldsymbol{z}) \ln p(\boldsymbol{z}, \boldsymbol{\mathcal{X}}, \boldsymbol{\theta})  d\boldsymbol{z}\right $ |  |  |  |  |  |  |
|                                                                                                                                   |                                                                                                                                                                                                        |  |  |  |  |  |  |





