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Latent Dirichlet Allocation (LDA) 
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Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

✏ But we only observe the documents; the other structure is hidden.

✏ We compute the posterior

p.topics, proportions, assignments j documents/

Latent Dirichlet Allocation (LDA) 
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LDA Generative Model 
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n  Observations: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 
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n  Marginalize parameters 
¨  Document-specific topic weights 
¨  Corpus-wide topic-specific word distributions 

n  Unplate to see dependencies induced 

Collapsed LDA Sampling 
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n  Sample topic indicators for each word 
¨  Algorithm: 

Collapsed LDA Sampling 

©Emily Fox 2014 8 

�k

wd
i

K

Nd
D

zdi

⇡d↵ �

/ p(zdi = k | {zdj , j 6= i},↵)p(wd
i |{wc

j : z
c
j = d, (j, c) 6= (i, d)},�)

p(zdi = k | z\id, {wd
i },↵,�)



5 

Select a Document 

Etruscan	   trade	   price	   temple	   market	  
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Randomly Assign Topics 
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Randomly Assign Topics 
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Maintain Local Statistics 

wd
i

zdi 3	   2	   1	   3	   1	  
Etruscan	   trade	   price	   temple	   market	  

©Emily Fox 2014 12 

Topic	  1	   Topic	  2	   Topic	  3	  

Doc	  d	  
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Maintain Global Statistics 

Topic	  1	   Topic	  2	   Topic	  3	  

Etruscan	   1	   0	   35	  

market	   50	   0	   1	  

price	   42	   1	   0	  

temple	   0	   0	   20	  

trade	   10	   8	   1	  

...	  

Total  
counts  
from all 
docs 
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Topic	  1	   Topic	  2	   Topic	  3	  

Doc	  d	   2	   1	   2	  

Resample Assignments 
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Topic	  1	   Topic	  2	   Topic	  3	  

Etruscan	   1	   0	   35	  

market	   50	   0	   1	  

price	   42	   1	   0	  

temple	   0	   0	   20	  

trade	   10	   8	   1	  

...	  

Topic	  1	   Topic	  2	   Topic	  3	  

Doc	  d	   2	   1	   2	  
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What is the conditional distribution for this topic? 

n  Part I: How much does this document like each topic? 
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Topic 1 Topic 2 Topic 3 

©Emily Fox 2014 16 

Topic	  1	   Topic	  2	   Topic	  3	  

Doc	  d	   2	   0	   2	  

What is the conditional distribution for this topic? 
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n  Part I: How much does this document like each topic? 
n  Part II: How much does each topic like this word? 
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i

zdi 3	   ?	   1	   3	   1	  
Etruscan	   trade	   price	   temple	   market	  

What is the conditional distribution for this topic? 

Topic 1 Topic 2 Topic 3 

Topic	  1	   Topic	  2	   Topic	  3	  

trade	   10	   7	   1	  
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n  Part I: How much does this document like each topic? 
n  Part II: How much does each topic like this word? 
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Etruscan	   trade	   price	   temple	   market	  

What is the conditional distribution for this topic? 

Topic 1 Topic 2 Topic 3 
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n  Part I: How much does this document like each topic? 
n  Part II: How much does each topic like this word? 
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i

zdi 3	   ?	   1	   3	   1	  
Etruscan	   trade	   price	   temple	   market	  

What is the conditional distribution for this topic? 

Topic 1 Topic 2 Topic 3 
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Sample a New Topic Indicator 
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Update Counts 
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Topic	  1	   Topic	  2	   Topic	  3	  

Etruscan	   1	   0	   35	  

market	   50	   0	   1	  

price	   42	   1	   0	  

temple	   0	   0	   20	  

trade	   10	   7	   1	  

...	  

Topic	  1	   Topic	  2	   Topic	  3	  

Doc	  d	   2	   0	   2	  

Geometrically… 
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Issues with Generic LDA Sampling 
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n  Slow mixing rates à Need many iterations 
n  Each iteration cycles through sampling topic assignments for 

all words in all documents 
n  Modern approaches include: 

¨  Large-scale LDA.  For example,  
Mimno, David, Matthew D. Hoffman and David M. Blei. "Sparse stochastic inference for 
latent Dirichlet allocation." International Conference on Machine Learning, 2012. 

¨  Distributed LDA.  For example, 
Ahmed, Amr, et al. "Scalable inference in latent variable models." Proceedings of the fifth 
ACM international conference on Web search and data mining (2012): 123-132 

¨  And many, many more! 
 

n  Alternative: Variational methods instead of sampling 
¨  Approximate posterior with an optimized variational distribution 

24 

Variational Methods 

Machine Learning for Big Data 
CSE547/STAT548, University of Washington 

Emily Fox 
March 11th, 2014 

©Emily Fox 2014 

Case Study 5: Mixed Membership Modeling 
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Variational Methods Goal 
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n  Recall task: Characterize the posterior 

n  Turn posterior inference into an optimization task 
n  Introduce a “tractable” family of distributions over parameters 

and latent variables 
¨  Family is indexed by a set of “free parameters” 
¨  Find member of the family closest to: 

Variational Methods Cartoon 
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n  Cartoon of goal: 

n  Questions: 
¨  How do we measure “closeness”? 
¨  If the posterior is intractable, how can we approximate something we do 

not have to begin with? 
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A Measure of Closeness 
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n  Kullback-Leibler (KL) divergence 
¨  Measures “distance” between two distributions p and q 

 

n  If p = q for all θ  

n  Otherwise, 

A Measure of Closeness 
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n  Not symmetric 
n  p determines where the difference is important: 

¨  p(θ)=0 and q(θ)≠0 

¨  p(θ)≠0 and q(θ)=0 

n  Want 

n  Just as hard as the original problem! 

KL(p||q) , D(p||q) =
Z

✓
p(✓) log

p(✓)

q(✓)
d✓
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Reverse Divergence 
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n  Divergence D(p || q )  
¨  true distribution p defines support of diff.  
¨  the “correct” direction 
¨  will be intractable to compute 

n  Reverse divergence D(q || p )  
¨  approximate distribution defines support 
¨  tends to give overconfident results 
¨  will be tractable 

Interpretations of Minimizing 
Reverse KL 

©Emily Fox 2014 30 

n  Similarity measure: 

n  Evidence lower bound (ELBO) 

D(q||p) = Eq


log

q

p

�
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Interpretations of Minimizing 
Reverse KL 
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n  Evidence lower bound (ELBO) 

n  Therefore, 
¨  ELBO provides a lower bound on marginal likelihood 
¨  Maximizing ELBO is equivalent to minimizing KL 

    

log p(x) = D(q(z, ✓)||p(z, ✓|x)) + L(q) � L(q)

Mean Field 
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n  How do we choose a Q such that the following is tractable? 
 
 
n  Simplest case = mean field approximation 

¨  Assume each parameter and latent variable is conditionally independent given 
the set of free parameters 

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

Original graph Naïve mean field 

L(q) = Eq[log p(z, ✓, x)]� Eq[log q(z, ✓)]

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 
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Mean Field 
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n  Naïve mean field decomposition: 

n  Under this approximation, entropy term decomposes as 

 

n  Can (always) rewrite joint term as  

L(q) = Eq[log p(z, ✓, x)]� Eq[log q(z, ✓)]

q(z, ✓) = q(✓ | �)
NY

i=1

q(zi | �i)

Eq[log p(✓, z, x)] = Eq[log p(✓ | z, x)] + Eq[log p(z, x)]

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

Eq[log p(✓, z, x)] = Eq[log p(z
i | z\i, ✓, x)] + Eq[log p(z\i, ✓, x)]

Mean Field – Optimize  

©Emily Fox 2014 34 

n  Examine one free parameter, e.g.,  

¨  Look at terms of ELBO just depending on 

  

�

�

L� =

L(q) = Eq[log p(✓ | z, x)] + Eq[log p(z, x)]� Eq[log q(✓ | �)]�
X

i

Eq[log q(z
i | �i

)]

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

�
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Mean Field – Optimize  

©Emily Fox 2014 35 

n  Examine another free parameter, e.g.,  

¨  Look at terms of ELBO just depending on 

n  This motivates using a coordinate ascent algorithm for optimization 
¨  Iteratively optimize each free parameter holding all others fixed 

Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

L�i

=

L(q) = Eq[log p(z
i | z\i, ✓, x)] + Eq[log p(z\i, ✓, x)� Eq[log q(✓ | �)]�

X

i

Eq[log q(z
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�i

Algorithm Outline 
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Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

<�Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 

(Mean Field) Variational Bayesian Learning 

ln p(x) = ln
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•  Initialization: Randomly select starting distribution 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 

q(0)✓

q(t)z = argmax

qz
L(qz, q(t�1)

✓ )

q(t)✓ = argmax

q✓
L(q(t)z , q✓)
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Mean Field for LDA 
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n  In LDA, our parameters are 

n  The variational distribution factorizes as 

n  The joint distribution factorizes as 
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Mean Field for LDA 
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n  Examine the ELBO 
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Mean Field for LDA 
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n  Let’s look at some of these terms 

 
 

n  Other terms follow similarly 
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Optimize via Coordinate Ascent 
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n  Algorithm: �k
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Optimize via Coordinate Ascent 
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n  Algorithm: �k
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Generalizing… 
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n  Condition 1: Complete data likelihood is in exponential family 

n  Condition 2: Parameter prior is conjugate to complete data likelihood 

 

log p(x) �
Z

qz(z)q✓(✓) log
p(x, z, ✓)

qz(z)q✓
dzd✓

(Mean Field) Variational Bayesian Learning 
VB Scoring for Graphical Models 5

p(x, θ |y, m) requires knowing its normalising constant, the marginal likelihood. In-
stead we use a simpler, factorised approximation to q(x, θ) ≈ qx(x)qθ(θ):

ln p(y |m) ≥
∫

qx(x)qθ(θ) ln
p(y,x, θ |m)

qx(x)qθ(θ)
dx dθ = Fm(qx(x), qθ(θ),y). (5)

The quantity F is a functional of the free distributions qx(x) and qθ(θ).

2.2. Variational Bayesian EM
The variational Bayesian algorithm iteratively maximises F in equation (5) with respect
to the free distributions, qx(x) and qθ(θ). We use elementary calculus of variations to
take functional derivatives of the lower bound with respect qx(x) and qθ(θ), each while
holding the other fixed. This results in the following update equations where the
superscript (t) denotes the iteration number.

q(t+1)
x (x) ∝ exp

[∫
ln p(x,y | θ, m) q(t)

θ (θ) dθ

]
(6)

q(t+1)
θ (θ) ∝ p(θ |m) exp

[∫
ln p(x,y | θ, m) q(t+1)

x (x) dx

]
. (7)

Clearly qθ(θ) and qxi(xi) are coupled, so we iterate these equations until convergence.
Readers familiar with the EM algorithm (Dempster et al. , 1977) may note the simi-
larity between this iterative algorithm and EM. We call this procedure the Variational
Bayesian EM Algorithm for reasons which will become clearer in the following sections;
see also Attias (2000) and Ghahramani and Beal (2001).

Re-writing (5), it is easy to see that maximising F is equivalent to minimising the
KL divergence between qx(x) qθ(θ) and the joint posterior p(x, θ |y, m):

ln p(y |m)−Fm(qx(x), qθ(θ),y) =

∫
qx(x) qθ(θ) ln

qx(x) qθ(θ)

p(θ,x |y, m)
dx dθ = KL(q‖p) . (8)

Note that whilst this factorisation of the posterior distribution over latent variables
and parameters may seem drastic, one can think of it as replacing stochastic depen-
dencies between x and θ with deterministic dependencies between relevant moments of
the two sets of variables.

Variational methods for lower bounding probabilities have been explored by several
researchers in the past decade. Hinton and van Camp (1993) proposed an early ap-
proach for Bayesian learning of one-hidden layer neural networks using the restriction
that qθ(θ) is Gaussian. Neal and Hinton (1998) presented a generalisation of EM which
made use of Jensen’s inequality to allow partial E-steps. Jordan et al. (1998) review
variational methods in a general context. Variational Bayesian methods have been ap-
plied to various models with latent variables (Waterhouse et al. , 1995; MacKay, 1997;
Bishop, 1999; Attias, 2000; Ghahramani and Beal, 2000). The structural EM algo-
rithm for scoring discrete graphical models (Friedman, 1998) is closely related to the
variational method described here except that in (6) the distribution over θ is replaced
by the MAP estimate.

Temporary notation change:  observations y, hidden variables x 

6 M. J. Beal and Z. Ghahramani

3. CONJUGATE-EXPONENTIAL MODELS
We consider a particular class of graphical models with latent variables, which we call
conjugate-exponential (CE) models. We explicitly apply the variational method to these
parametric families, resulting in a simple generalisation of EM3. Conjugate-exponential
models satisfy two conditions:
Condition (1). The complete data likelihood is that of an exponential family:
p(x,y | θ) = f(x,y) g(θ) exp

{
φ(θ)Tu(x,y)

}
, where φ(θ) is the vector of natural pa-

rameters, and u and f and g are the functions that define the exponential family.
Condition (2). The parameter prior is conjugate to the complete data likelihood:
p(θ | η, ν) = h(η, ν) g(θ)η exp

{
φ(θ)T ν

}
, where η and ν are hyperparameters.

Theorem. (Conjugate-Exponential Models). Given an iid data set y =
{y1, . . .yn}, if the model satisfies conditions (1) and (2), then at every iteration of
the variational Bayesian EM algorithm and at the maxima of F(qx(x), qθ(θ),y):

(a) qθ(θ) is conjugate with parameters η̃ = η + n, ν̃ = ν +
∑n

i=1 u(yi):

qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp
{
φ(θ)T ν̃

}
(9)

where u(yi) = Eqxi
(u(xi,yi)), using Eqxi

to denote expectation under the varia-
tional posterior over the latent variable(s) associated with the ith datum.

(b) qx(x) =
∏n

i=1 qxi(xi) with

qxi(xi) = p(xi |yi, φ) ∝ f(xi,yi) exp
{
φ

T
u(xi,yi)

}
(10)

where φ = Eqθ
(φ(θ)), the expectation of the natural parameter.
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p(x, θ |y, m) requires knowing its normalising constant, the marginal likelihood. In-
stead we use a simpler, factorised approximation to q(x, θ) ≈ qx(x)qθ(θ):

ln p(y |m) ≥
∫

qx(x)qθ(θ) ln
p(y,x, θ |m)

qx(x)qθ(θ)
dx dθ = Fm(qx(x), qθ(θ),y). (5)

The quantity F is a functional of the free distributions qx(x) and qθ(θ).

2.2. Variational Bayesian EM
The variational Bayesian algorithm iteratively maximises F in equation (5) with respect
to the free distributions, qx(x) and qθ(θ). We use elementary calculus of variations to
take functional derivatives of the lower bound with respect qx(x) and qθ(θ), each while
holding the other fixed. This results in the following update equations where the
superscript (t) denotes the iteration number.

q(t+1)
x (x) ∝ exp

[∫
ln p(x,y | θ, m) q(t)

θ (θ) dθ

]
(6)

q(t+1)
θ (θ) ∝ p(θ |m) exp

[∫
ln p(x,y | θ, m) q(t+1)

x (x) dx

]
. (7)

Clearly qθ(θ) and qxi(xi) are coupled, so we iterate these equations until convergence.
Readers familiar with the EM algorithm (Dempster et al. , 1977) may note the simi-
larity between this iterative algorithm and EM. We call this procedure the Variational
Bayesian EM Algorithm for reasons which will become clearer in the following sections;
see also Attias (2000) and Ghahramani and Beal (2001).

Re-writing (5), it is easy to see that maximising F is equivalent to minimising the
KL divergence between qx(x) qθ(θ) and the joint posterior p(x, θ |y, m):

ln p(y |m)−Fm(qx(x), qθ(θ),y) =

∫
qx(x) qθ(θ) ln

qx(x) qθ(θ)

p(θ,x |y, m)
dx dθ = KL(q‖p) . (8)

Note that whilst this factorisation of the posterior distribution over latent variables
and parameters may seem drastic, one can think of it as replacing stochastic depen-
dencies between x and θ with deterministic dependencies between relevant moments of
the two sets of variables.

Variational methods for lower bounding probabilities have been explored by several
researchers in the past decade. Hinton and van Camp (1993) proposed an early ap-
proach for Bayesian learning of one-hidden layer neural networks using the restriction
that qθ(θ) is Gaussian. Neal and Hinton (1998) presented a generalisation of EM which
made use of Jensen’s inequality to allow partial E-steps. Jordan et al. (1998) review
variational methods in a general context. Variational Bayesian methods have been ap-
plied to various models with latent variables (Waterhouse et al. , 1995; MacKay, 1997;
Bishop, 1999; Attias, 2000; Ghahramani and Beal, 2000). The structural EM algo-
rithm for scoring discrete graphical models (Friedman, 1998) is closely related to the
variational method described here except that in (6) the distribution over θ is replaced
by the MAP estimate.
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What you need to know… 

n  Latent Dirichlet allocation (LDA)  
¨  Motivation and generative model specification 
¨  Collapsed Gibbs sampler 

n  Variational methods 
¨  Overall goal 
¨  Interpretation in terms of minimizing (reverse) KL 
¨  Mean field approximation 
¨  Mean field for LDA 
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Reading 

n  Mixed Membership Models: KM Sec. 27.3 
¨  Basic LDA:  

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent 
dirichlet allocation." the Journal of machine Learning research 3 
(2003): 993-1022. 

¨  Introduction:  
Blei, David M. "Probabilistic topic models." Communications of 
the ACM, vol. 55, no. 4 (2012): 77-84. 

¨  Sampling:  
Griffith, Thomas L. and Mark Steyvers. "Finding scientific topics." 
Proceedings of the National Academy of Sciences of the United 
States of America, Volume: 101, Supplement: 1 (2004): Pages: 
5228-5235 
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