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Task 3: Mixed Membership Models
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m Now: Document may belong to multiple clusters
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Latent Dirichlet Allocation (LDA)
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Latent Dirichlet Allocation (LDA)
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LDA Generative Model
= JEE

m Observations: wf,...,w%, y

m Associated topics: z{l,...,zj‘(,dé/tg’//&'f
m Parameters: = {{7%},{8c}} e
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Collapsed LDA Sampling
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m Marginalize parameters ) /%
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Collapsed LDA Sampling
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Select a Document
= JEE

Etruscan

trade

price

temple

market

©Emily Fox 2014

Randomly Assign Topics
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Randomly Assign Topics
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Maintain Local Statistics
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Maintain Global Statistics
= JEE

z 3 2 1 3 1
& Etruscan | trade price temple | market
Topic 1|Topic 2| Topic 3

Topicl | Topic2 | Topic3 Docd 2 1 2
Etruscan 1 0 35
market 50 0 1

Total
price 42 1 0 \ counts
temple 0 0 20 from all
trade 10 8 1 docs
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Resample Assignments
] P g
z 3 2 1 3 1
é Etruscan | trade price temple | market
Topic 1|Topic 2| Topic 3

Topicl | Topic2 | Topic3 Docd 2 1 2
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 8 1
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What is the conditional distribution for this topic?
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What is the conditional distribution for this topic?
"

m Part I: How much does this document like each topic?
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What is the conditional distribution for this topic?
" JEE

m Part I: How much does this document like each topic?
m Part Il: How much does each topic like this word?
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What is the conditional distribution for this topic?
" JEE

m Part I: How much does this document like each topic?
m Part Il: How much does each topic like this word?
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What is the conditional distribution for this topic?
" JEE—

m Part I: How much does this document like each topic?
m Part Il: How much does each topic like this word?
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Sample a New Topic Indicator
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Update Counts
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price 42 1 0
temple 0 0 20
trade 10 7 1
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Issues with Generic LDA Sampling
" S

m Slow mixing rates = Need many iterations

m Each iteration cycles through sampling topic assignments for
all words in all documents

m Modern approaches include:
Large-scale LDA. For example,
Mimno, David, Matthew D. Hoffman and David M. Blei. "Sparse stochastic inference for
latent Dirichlet allocation." International Conference on Machine Learning, 2012.
Distributed LDA. For example,
Ahmed, Amr, et al. "Scalable inference in latent variable models." Proceedings of the fifth
ACM international conference on Web search and data mining (2012): 123-132

And many, many more!

m Alternative: Variational methods instead of sampling
Approximate posterior with an optimized variational distribution
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Case Study 5: Mixed Membership Modeling

Variational Methods

Machine Learning for Big Data
CSES547/STAT548, University of Washington
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Variational Methods Goal
" S

m Recall task: Characterize the posterior

m Turn posterior inference into an optimization task

m Introduce a “tractable” family of distributions over parameters
and latent variables
Family is indexed by a set of “free parameters”
Find member of the family closest to:
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Variational Methods Cartoon
" S

m Cartoon of goal:

m Questions:
How do we measure “closeness”?

If the posterior is intractable, how can we approximate something we do
not have to begin with?

©Emily Fox 2014 26

13



A Measure of Closeness

* JEE
m Kullback-Leibler (KL) divergence

Measures “distance” between two distributions p and g

m Ifp=qforall 6

m Otherwise,
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A Measure of Closeness
= S

KL(pllg) £ D(pllg) = /0 p(6) log %d@

Not symmetric

p determines where the difference is important:
p(8)=0 and q(8)=0

p(B)=0 and q(8)=0

m Want

Just as hard as the original problem!
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Reverse Divergence
" S

m Divergence D(p || q)
true distribution p defines support of diff.
the “correct” direction
will be intractable to compute

m Reverse divergence D(q || p)
approximate distribution defines support
tends to give overconfident results
will be tractable
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Interpretations of Minimizing

. Reverse KL

D(qllp) = E, llog %1

m  Similarity measure:

m  Evidence lower bound (ELBO)
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Interpretations of Minimizing

. Reverse KL

m Evidence lower bound (ELBO)

logp(z) = D(q(z,0)||p(2,0]x)) + L(q) > L(q)

m Therefore,
ELBO provides a lower bound on marginal likelihood
Maximizing ELBO is equivalent to minimizing KL
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Mean Field ;) - £, [logp(z, 0, 2)] — B, llog (=, 6)
" S

m How do we choose a Q such that the following is tractable?

m Simplest case = mean field approximation

Assume each parameter and latent variable is conditionally independent given
the set of free parameters

O O OO0
O O OO0
O O OO0
O O OO0

Original graph Naive mean field
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Mean Field () = £,[logp(z,6,2)] - E,[log g, )
* JE——

m Naive mean field decompositior;\:f 5 8:8:8 :g :
; ; e O
Q(z7 9) = Q(e | 7) H Q(zz | ¢Z) GO0

i—1 0000

m Under this approximation, entropy term decomposes as

m Can (always) rewrite joint term as
Eqllogp(0,z,2)] = Eqllogp(0 | 2, 2)] + Eq[log p(2, z)]

Eylogp(0, 2, z)] = Egllog p(2' | 214, 0, )] + Eq[log p(2\;, 6, 7))

©Emily Fox 2014 33

. . . . N B
Mean Field — Optimize 7 5 Job%”
" S P

m Examine one free parameter, e.g., Y
L(q) = Eqllogp(0 | z,2)] + Eqlog p(z, z)] — Egllogq(0 | 7)] = > Eyllogq(z" | ¢')]

Look at terms of ELBO just depending on 7Y

L =
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. . . ) . | N B
Mean Field — Optimize ¢' 5 Jooo”
OO

" oddo

» Examine another free parameter, e.g., ¢*
L(q) = Eqllogp(z* | 24,0, )] + Eqllog p(2\, 0, ) — Eyllog q(6 | )] = > _ Eylog (2" | ¢")]

Look at terms of ELBO just depending on qbi

L% =

m This motivates using a coordinate ascent algorithm for optimization
lteratively optimize each free parameter holding all others fixed
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Algorithm Outline o> PEAR
" P

(0)

Initialization: Randomly select starting distribution g,
E-Step: Given parameters, find posterior of hidden data

gt) = arg max £(q., Qét_l))
qz

M-Step: Given posterior distributions, find likely parameters

q(gt) = arg max L( (t) q9)
de

z

Iteration: Alternate E-step & M-step until convergence
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Mean Field for LDA
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= InLDA, our parameters are 6 = {7}, {3} Zi T K
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m The variational distribution factorizes as

m The joint distribution factorizes as

K D Ny
p(m, B.z,w) = [T pBi | V) [T o(x [ ) [T [ 7)p(wf | 21, 8)
k=1 d=1 i=1
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Mean Field for LDA
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K D
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d Ng
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©Emily Fox 2014 38

19



Mean Field for LDA
" S

m Let's look at some of these terms

By [logp(z{ | 79)]

Eqllog q(zf | ¢7)]

m Other terms follow similarly
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Optimize via Coordinate Ascent

" JEE——
m  Algorithm:
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Optimize via Coordinate Ascent
" I a7t <

=

<
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= Algorithm: d
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Generalizing... west) > [a.Cu@0s2020

q- (Z)QH
" JEE

m Condition 1: Complete data likelihood is in exponential family

dzdb

m Condition 2: Parameter prior is conjugate to complete data likelihood

EM for MAP estimation Variational Bayesian EM

Goal: maximise p(@ |T)  w.r.t. 6 Goal: lower bound p(x)

E Step: compute VB-E Step: compute ¢! = Ew [6(0)]
" (2) = plz |2, 6%) a"(2) = p(z]2.8")

M Step: VB-M Step:

6(+) —argmaxg ¢V (2) np(z.2,0) 4z | 45" (0) x exp [Jol "V (2) np(2.,0) d2]
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What you need to know...

"
m Latent Dirichlet allocation (LDA)
[ Motivation and generative model specification
1 Collapsed Gibbs sampler

m Variational methods
1 Overall goal
[ Interpretation in terms of minimizing (reverse) KL
1 Mean field approximation
1 Mean field for LDA
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Reading
" JEEE
m Mixed Membership Models: KM Sec. 27.3

1 Basic LDA:
Blei, David M., Andrew Y. Ng, and Michael |. Jordan. "Latent
dirichlet allocation." the Journal of machine Learning research 3
(2003): 993-1022.

1 Introduction:
Blei, David M. "Probabilistic topic models." Communications of
the ACM, vol. 55, no. 4 (2012): 77-84.

1 Sampling:
Griffith, Thomas L. and Mark Steyvers. "Finding scientific topics."
Proceedings of the National Academy of Sciences of the United
States of America, Volume: 101, Supplement: 1 (2004): Pages:
5228-5235
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