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Case Study 5: Mixed Membership Modeling 

Task 2: Cluster Documents 
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n  Then examined: 
¨ Cluster documents based on topic 
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A Generative Model 

©Emily Fox 2014 3 

n  Documents: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 
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Model In Pictures 

n  Mixture weights (on topics)  

n  Topic distributions (on words) 

n  For each document, 
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Bayesian Document Model 

n  Model parameters     ,          unknown 

n  Bayesian approach 

n  Need distribution on pmf’s 
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Dirichlet Distributions 
n  The Dirichlet distribution is defined on the simplex 
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Moments: 
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Model Summary 

n  Prior on model parameters 
¨  E.g., symmetric Dirichlet for 

 
¨  Dirichlet prior for topic parameters  

n  Sample observations as  
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Posterior Inference via Sampling 

n  Iterate between sampling 

 
n  What form do these complete conditionals take? 

¨  First a look at statements of conditional independence in directed 
graphical models  
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Conditional Independence in 
Bayes Nets 
n  Consider 4 different junction configurations 

 
n  Conditional versus unconditional independence: 
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Sec. 2.5. Graphical Models 59

x y zx y z x y z x y z
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Figure 2.2. Pictorial representation of the Bayes ball algorithm for determining the independence
statements in a directed graphical model. There are four possible three node combinations depicted by
the graphs of (a)-(d). For each of these structures, we examine the case of marginal independence of x
and z (top) or conditional independence of x and z (bottom) given an observation y (gray node). If a
ball starting at one of the x or z nodes can pass to the other, as indicated by the straight arrows, then
those two nodes are not (conditionally/marginally) independent. If the ball bounces back, as indicated
by a set of walls and curved arrows, then the nodes are (conditionally/marginally) independent. These
rules can be linked together in various combinations to examine larger graphical models.

directed graph based on directionality of the edges and whether or not the intermediary
node is an evidence node (i.e., observed). Some of the junction scenarios are bestowed
with a set of walls that deflect the Bayes ball. Two random variables xi and xj associated
with nodes i and j are then deemed conditionally dependent given the random variables
xVk associated with a set of evidence nodes Vk (which may be the empty set) if a
ball starting at one node can traverse the graph to the other node based on the rules
summarized in Fig. 2.2; the random variables are conditionally independent otherwise.
Another method of determining some statements of conditional independence, and ones
extremely useful for the inference algorithms we develop, is described in the following.

Markov Blanket

For a directed graph, a node is conditionally independent of all other nodes in the graph
given its Markov blanket which consists of the node’s parents, children, and coparents.
The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution Q
has a parameterized density q(· | λ), implies the following hierarchical Bayesian model:

p(y1, . . . , yn, θ | λ) = q(θ | λ)
n
∏

i=1

p(yi | θ), (2.104)

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations

Bayes Ball Algorithm 

n  Consider 4 different junction configurations 

 
n  Bayes ball algorithm 
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Sec. 2.5. Graphical Models 59
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ball starting at one node can traverse the graph to the other node based on the rules
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The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution Q
has a parameterized density q(· | λ), implies the following hierarchical Bayesian model:

p(y1, . . . , yn, θ | λ) = q(θ | λ)
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∏

i=1

p(yi | θ), (2.104)

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations
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Markov Blanket 

n  A node is conditionally independent of all other nodes in the 
graph given its Markov blanket 

 
n  Gibbs sampling iterates between 

full conditionals 

    à simplify to 
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60 CHAPTER 2. BACKGROUND

xi

Figure 2.3. Markov blanket for xt consisting of the node’s parents, coparents, and children. The node
xt is then conditionally independent of all other nodes in the graph given its Markov blanket.

λ λ

θ θ

y1 y2 y3 y4 yn
yi

n

Figure 2.4. Graphical representation of the hierarchical Bayesian model of n exchangeable random
variables implied by de Finetti’s theorem. Each observation is an independent draw from a density
parameterized by θ, which itself has a prior distribution with hyperparameters λ. Left : An explicit
representation of the graphical model. Right : A compact representation using a plate to denote n
replicates of the observations yi.

yi. The fact that this set of random variables is yielded conditionally i.i.d. given θ can
be directly verified from the graphical model by using the Markov blanket concept or
the Bayes ball algorithm.

! 2.5.3 Undirected Graphical Models

Many inference algorithms for directed graphical models rely on first converting the
graph to an undirected form. This conversion process, referred to as moralization,
“marries” any coparents by connecting them with an undirected edge. Each directed
edge is then converted into an undirected edge. See Fig. 2.5. In the following, we
provide a very brief sketch of the theory of undirected graphical models that we employ
in subsequent sections.

Undirected graphical models, or Markov random fields (MRF), are typically used
when there is no causal structure to the data, as in images, which instead have spatial
dependencies. Whereas the directed graphical model is easily derived from the factor-

Unplated Document Model 

n  Recall that the plate notation is really indicating 

©Emily Fox 2014 12 

⇡

�k
zd

wd
i

K

Nd
D

↵
�



7 

Complete Conditional for 
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n  Recall conjugate Dirichlet prior 

n  Likelihood: 
n  Dirichlet posterior  

¨  Count occurrences of   
¨  Then, 

 

¨  Conjugacy: Posterior has same form as prior 
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Complete Conditional for 
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n  Again, Dirichlet prior 

n  Consider docs d such that 
¨  For these observations, 
¨  Do any other docs depend on      ?  

n  Then, 

¨  Again, posterior has same form as prior 

�k
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Complete Conditional for 
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n  We have 

n  Calculate the posterior for each value of zd 
(“responsibility” of each topic to the doc): 

n  Sample each cluster indicator as 
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n  In conjugate models, can analytically marginalize 
some variables and only sample remaining 

 
n  Can improve efficiency if marginalized variables are high-dim 

¨  Reduced dimension of search space 
¨  But, often introduces dependences! 

Collapsed Gibbs Sampler 
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n  Derivation 

Collapsed Sampler Full Conditional 
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Collapsed Sampler Full Conditional 
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Collapsed Sampler Intuition (MoG) 

n  Previously,  
 
n  If you’re not told  
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Example – Uncollapsed Results 

log p(x | π, θ) = −539.17 log p(x | π, θ) = −497.77

log p(x | π, θ) = −404.18 log p(x | π, θ) = −454.15

log p(x | π, θ) = −397.40 log p(x | π, θ) = −442.89

Figure 2.18. Learning a mixture of K = 4 Gaussians using the Gibbs sampler of Alg. 2.1. Columns
show the current parameters after T=2 (top), T=10 (middle), and T=50 (bottom) iterations from two
random initializations. Each plot is labeled by the current data log–likelihood.

Figure courtesy of 
Erik Sudderth 
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Example – Collapsed Results 

log p(x | π, θ) = −399.06 log p(x | π, θ) = −461.94

log p(x | π, θ) = −397.38 log p(x | π, θ) = −449.23

log p(x | π, θ) = −396.53 log p(x | π, θ) = −448.68

Figure 2.19. Learning a mixture of K = 4 Gaussians using the Rao–Blackwellized Gibbs sampler of
Alg. 2.2. Columns show the current parameters after T=2 (top), T=10 (middle), and T=50 (bottom)
iterations from two random initializations. Each plot is labeled by the current data log–likelihood.

Figure courtesy of 
Erik Sudderth 
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Comparing Collapsed vs. Uncollapsed 

94 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

Given previous cluster assignments z(t−1), sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , N}.
2. Set z = z(t−1). For each i ∈ {τ(1), . . . , τ(N)}, sequentially resample zi as follows:

(a) For each of the K clusters, determine the predictive likelihood

fk(xi) = p(xi | {xj | zj = k, j "= i} ,λ)

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.

(b) Sample a new cluster assignment zi from the following multinomial distribution:

zi ∼
1

Zi

K∑

k=1

(N−i
k + α/K)fk(xi)δ(zi, k) Zi =

K∑

k=1

(N−i
k + α/K)fk(xi)

N−i
k is the number of other observations assigned to cluster k (see eq. (2.162)).

(c) Update cached sufficient statistics to reflect the assignment of xi to cluster zi.

3. Set z(t) = z. Optionally, mixture parameters may be sampled via steps 2–3 of Alg. 2.1.

Algorithm 2.2. Rao–Blackwellized Gibbs sampler for a K component exponential family mixture
model, as defined in Fig. 2.9. Each iteration sequentially resamples the cluster assignments for all N
observations x = {xi}N

i=1 in a different random order. Mixture parameters are integrated out of the
sampling recursion using cached sufficient statistics of the parameters assigned to each cluster.
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Standard Gibbs Sampler
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Standard Gibbs Sampler
Rao−Blackwellized Sampler

Figure 2.20. Comparison of standard (Alg. 2.1, dark blue) and Rao–Blackwellized (Alg. 2.2, light red)
Gibbs samplers for a mixture of K = 4 two–dimensional Gaussians. We compare data log–likelihoods at
each of 1000 iterations for the single N = 300 point dataset of Figs. 2.18 and 2.19. Left: Log–likelihood
sequences for 20 different random initializations of each algorithm. Right: From 100 different random
initializations, we show the median (solid), 0.25 and 0.75 quantiles (thick dashed), and 0.05 and 0.95
quantiles (thin dashed) of the resulting log–likelihood sequences. The Rao–Blackwellized sampler has
superior typical performance, but occasionally remains trapped in local optima for many iterations.

optima for many iterations (see right columns of Figs. 2.18 and 2.19). These results
suggest that while Rao–Blackwellization can usefully accelerate mixing, convergence
diagnostics are still important.

Figure courtesy of 
Erik Sudderth 

Log Likelihood vs. Gibbs Iteration  
(multiple chains) 
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n  Now: Document may belong to multiple clusters 

EDUCATION 

FINANCE 

TECHNOLOGY 

Task 3: Mixed Membership Models 
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Latent Dirichlet Allocation (LDA) 

©Emily Fox 2014 24 



13 

Latent Dirichlet Allocation (LDA) 
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Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

✏ But we only observe the documents; the other structure is hidden.

✏ We compute the posterior

p.topics, proportions, assignments j documents/

Latent Dirichlet Allocation (LDA) 
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LDA Generative Model 
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n  Observations: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 
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n  Data: The OCR’ed collection of Science from 1990-2000 
¨  17K documents 
¨  11M words 
¨  20K unique terms (stop words and rare words removed) 

n  Model: 100-topic LDA model 

Example Inference – Topic Weights 

Example inference
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Example Inference – Topic Words 
Example inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations
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n  Marginalize parameters 
¨  Document-specific topic weights 
¨  Corpus-wide topic-specific word distributions 

n  Unplate to see dependencies induced 

Collapsed LDA Sampling 
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What you need to know… 

n  Bayesian specification of document clustering model 

n  Rules of conditional and unconditional independence in 
directed graphical models (Bayes nets) 
¨  Bayes’ ball 
¨  Markov blanket 

n  Gibbs sampling for Bayesian document model 

n  Latent Dirichlet allocation (LDA)  
¨  Motivation and generative model specification 
¨  Collapsed Gibbs sampler 
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Reading 

n  Mixed Membership Models: KM Sec. 27.3 
¨  Basic LDA:  

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent 
dirichlet allocation." the Journal of machine Learning research 3 
(2003): 993-1022. 

¨  Introduction:  
Blei, David M. "Probabilistic topic models." Communications of 
the ACM, vol. 55, no. 4 (2012): 77-84. 

¨  Sampling:  
Griffith, Thomas L. and Mark Steyvers. "Finding scientific topics." 
Proceedings of the National Academy of Sciences of the United 
States of America, Volume: 101, Supplement: 1 (2004): Pages: 
5228-5235 
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