Warm up

Regrade requests submitted directly in Gradescope, do not email instructors.

For each block compute the memory required in terms of \(n, p, d \).

If \(d \ll p \ll n \), what is the most memory efficient program (blue, green, red)?

If you have unlimited memory, what do you think is the fastest program?

1 float in NumPy = 8 bytes

\[
10^6 \approx 2^{20} \text{ bytes} = 1 \text{ MB}
\]

\[
10^9 \approx 2^{30} \text{ bytes} = 1 \text{ GB}
\]
Gradient Descent

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2016
Machine Learning Problems

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.

\[\sum_{i=1}^{n} \ell_i(w) \]
Machine Learning Problems

- Have a bunch of iid data of the form:

\[\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:

Each \(\ell_i(w) \) is convex.

\[
\sum_{i=1}^{n} \ell_i(w)
\]

\(g \) is a subgradient at \(x \) if

\[
f(y) \geq f(x) + g^T(y - x)
\]

\(f \) convex:

\[
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y, \lambda \in [0, 1]
\]

\[
f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \forall x, y
\]
Have a bunch of iid data of the form:

\[\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

Learning a model’s parameters:

Each \(\ell_i(w) \) is convex.

Logistic Loss: \(\ell_i(w) = \log(1 + \exp(-y_i x_i^T w)) \)

Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)
Least squares

- Have a bunch of iid data of the form:
 \[
 \{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}
 \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.

 Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)

How does software solve:

\[
\frac{1}{2} \|Xw - y\|_2^2
\]
Least squares

- Have a bunch of iid data of the form:

\[\left\{ (x_i, y_i) \right\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:

Each \(\ell_i(w) \) is convex.

Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)

How does software solve:

\[\frac{1}{2} \| Xw - y \|^2_2 \]

...its complicated:

(LAPACK, BLAS, MKL...)

Do you need high precision?
Is \(X \) column/row sparse?
Is \(\hat{w}_{LS} \) sparse?
Is \(X^TX \) “well-conditioned”?
Can \(X^TX \) fit in cache/memory?
Taylor Series Approximation

- Taylor series in one dimension:
 \[f(x + \delta) = f(x) + f'(x)\delta + \frac{1}{2} f''(x)\delta^2 + \ldots \]

- Gradient descent:
Taylor Series Approximation

- Taylor series in \(d\) dimensions:
 \[
 f(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \ldots
 \]

- Gradient descent:

 \[
 \begin{align*}
 \text{Init} & \quad x_0 \\
 \text{Loop} & \\
 x_{t+1} & = x_t - \frac{\eta}{2} \nabla f(x_t)
 \end{align*}
 \]
Gradient Descent

$$f(w) = \frac{1}{2} \|Xw - y\|_2^2$$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

$$\nabla f(w) =$$
Gradient Descent

\[f(w) = \frac{1}{2} \|Xw - y\|^2 \]

\[w_{t+1} = w_t - \eta \nabla f(w_t) \]

\[\nabla f(w) = X^T(Xw - y) \]

\[w_\ast = \arg \min_w f(w) \implies \nabla f(w_\ast) = 0 \]

\[w_{t+1} - w_\ast = w_t - w_\ast - \eta \nabla f(w_t) \]
\[= w_t - w_\ast - \eta (\nabla f(w_t) - \nabla f(w_\ast)) \]
\[= w_t - w_\ast - \eta X^T X (w_t - w_\ast) \]
\[= (I - \eta X^T X)(w_t - w_\ast) \]
\[= (I - \eta X^T X)^{t+1}(w_0 - w_\ast) \]
Gradient Descent

\[f(w) = \frac{1}{2} ||Xw - y||^2_2 \]

\[w_{t+1} = w_t - \eta \nabla f(w_t) \]

\[(w_{t+1} - w_\ast) = (I - \eta X^T X)(w_t - w_\ast) \]

\[= (I - \eta X^T X)^{t+1}(w_0 - w_\ast) \]

Example:

\[X = \begin{bmatrix} 10^{-3} & 0 \\ 0 & 1 \end{bmatrix} \quad y = \begin{bmatrix} 10^{-3} \\ 1 \end{bmatrix} \quad w_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad w_\ast = \]
Gradient Descent \[f(w) = \frac{1}{2} ||Xw - y||^2_2 \]

\[w_{t+1} = w_t - \eta \nabla f(w_t) \]

\[(w_{t+1} - w_*) = (I - \eta X^TX)(w_t - w_*) \]

\[\equiv (I - \eta X^TX)^{t+1}(w_0 - w_*) \]

Example:

\[
X = \begin{bmatrix}
10^{-3} & 0 \\
0 & 1
\end{bmatrix} \quad
y = \begin{bmatrix}
10^{-3} \\
1
\end{bmatrix} \quad
w_0 = \begin{bmatrix}
0 \\
0
\end{bmatrix} \quad
w_* = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

\[X^TX = \begin{bmatrix}
10^{-6} & 0 \\
0 & 1
\end{bmatrix} \]

Pick \(\eta \) such that \[\max\{|1 - \eta 10^{-6}|, |1 - \eta|\} < 1 \]

\[
|w_{t+1,1} - w_{*,1}| = |1 - \eta 10^{-6}|^{t+1} |w_{0,1} - w_{*,1}| = |1 - \eta 10^{-6}|^{t+1} \\
|w_{t+1,2} - w_{*,2}| = |1 - \eta|^{t+1} |w_{0,2} - w_{*,2}| = |1 - \eta|^{t+1}
\]

\[\exists \theta < \frac{1}{\lambda_{max}(X^TX)} \leq \exp\left(-\frac{\eta 10^{-6}}{6+\eta}\right) \]
Taylor Series Approximation

- Taylor series in one dimension:

\[f(x + \delta) = f(x) + f'(x)\delta + \frac{1}{2}f''(x)\delta^2 + \ldots \]

- Newton’s method:

\[\hat{y} = x - \left(f''(x) \right)^{-1} f'(x) \]
Taylor Series Approximation

- Taylor series in \(d\) dimensions:
 \[
 f(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \ldots
 \]

- Newton’s method:
 \[
 \hat{y} = \text{argmin}_y \hat{f}_x(y) = x - \left[\nabla^2 f(x)\right]^{-1} \nabla f(x)
 \]
 Solution to
 \[
 \nabla^2 f(x) (\hat{y} - x) = -\nabla f(x)
 \]
Newton’s Method

\[f(w) = \frac{1}{2} \| Xw - y \|_2^2 \]

\[\nabla f(w) = \]

\[\nabla^2 f(w) = \]

\(v_t \) is solution to:

\[\nabla^2 f(w_t) v_t = -\nabla f(w_t) \]

\[w_{t+1} = w_t + \eta v_t \]
Newton’s Method

\[f(w) = \frac{1}{2} ||Xw - y||^2
\]

\[\nabla f(w) = X^T (Xw - y) \]

\[\nabla^2 f(w) = X^T X \]

\(v_t \) is solution to: \(\nabla^2 f(w_t)v_t = -\nabla f(w_t) \)

\[w_{t+1} = w_t + \eta v_t \]

For quadratics, Newton’s method can converge in one step! (No surprise, why?)

\[w_1 = w_0 - \eta(X^T X)^{-1}X^T (Xw_0 - y) \]

\[= (1 - \eta)w_0 + \eta(X^T X)^{-1}X^T y \]

\[= (1 - \eta)w_0 + \eta w_* \]

In general, for \(w_t \) “close enough” to \(w_* \) one should use \(\eta = 1 \)
In general for Newton’s method to achieve $f(w_t) - f(w_*) \leq \epsilon$:

$0\left(\log \log \left(\frac{1}{\epsilon}\right)\right)$

So why are ML problems overwhelmingly solved by gradient methods?

Hint: v_t is solution to: $\nabla^2 f(w_t) v_t = -\nabla f(w_t)$
General Convex case \(f(w_t) - f(w_*) \leq \epsilon \)

Newton’s method:
\[
t \approx \log(\log(1/\epsilon))
\]

Gradient descent:
- \(f \) is smooth and strongly convex: \(aI \leq \nabla^2 f(w) \leq bI \)
 \[
 \frac{b}{a} \log(1/\epsilon)
 \]
- \(f \) is smooth: \(\nabla^2 f(w) \leq bI \)
 \[
 b / \epsilon
 \]
- \(f \) is potentially non-differentiable: \(\|\nabla f(w)\|_2 \leq c \)
 \[
 \sqrt{\epsilon^2}
 \]

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…

Nocedal + Wright,
Bubeck
Revisiting… Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2016
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d, \quad y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^{n} P(y_i|x_i, w) \quad P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}
\]

\[
f(w) = \arg \min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))
\]

\[
\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla l_i(w)
\]

\[
\nabla l_i(w) = \frac{\exp(-y_i x_i^T w)}{1 + \exp(-y_i x_i^T w)} (-y_i x_i)
\]

Init \(w_0 = 0 \)

Loop

\[
w_{t+1} = w_t - \frac{2}{n} \sum_{i=1}^{n} \nabla l_i(w_t) (-y_i x_i)
\]
Stochastic Gradient Descent

- Have a bunch of iid data of the form:
 \[
 \{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}
 \]

- Learning a model’s parameters:
 Each \(\ell_i(w)\) is convex.

\[
\frac{1}{n} \sum_{i=1}^{n} \ell_i(w)
\]
Stochastic Gradient Descent

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^{n} \]
 \(x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \)

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.

Gradient Descent:

\[
w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^{n} \ell_i(w) \right) \bigg|_{w=w_t}
\]
Stochastic Gradient Descent

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.

Gradient Descent:
\[\mathcal{O}(\ln n) \text{ per step} \quad w_{t+1} = w_t - \eta \nabla w \left(\frac{1}{n} \sum_{i=1}^{n} \ell_i(w) \right) \]

Stochastic Gradient Descent:
\[\mathcal{O}(d) \quad w_{t+1} = w_t - \eta \nabla_w \ell_{I_t}(w) \bigg|_{w=w_t} \quad I_t \text{ drawn uniform at random from } \{1, \ldots, n\} \]

\[\mathbb{E}[\nabla \ell_{I_t}(w)] = \sum_{i=1}^{n} \mathbb{P}(I_t = i) \nabla \ell_i(w) = \frac{1}{n} \sum \nabla \ell_i(w) \]
Stochastic Gradient Descent

Theorem

Let

\[w_{t+1} = w_t - \eta \nabla w \ell_{I_t}(w) \bigg|_{w=w_t} \]

\(I_t \) drawn uniform at random from \(\{1, \ldots, n\} \)

so that

\[w_\star = \arg \min_w \ell(w) \]

\[\mathbb{E}[\nabla \ell_{I_t}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell_i(w) \overset{\text{def}}{=} \nabla \ell(w) \]

If

\[\|w_1 - w_\star\|^2_2 \leq R \]

and

\[\sup_{w} \max_{i} \| \nabla \ell_i(w) \|_2 \leq G \]

then

\[\mathbb{E}[\ell(\bar{w}) - \ell(w_\star)] \leq \frac{R}{2T \eta} + \frac{\eta G}{2} \leq \sqrt{\frac{RG}{T}} \]

\[\eta = \sqrt{\frac{R}{GT}} \]

\[\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w_t \]

(In practice use last iterate)
Stochastic Gradient Descent

Proof

\[\mathbb{E}[||w_{t+1} - w_*||_2^2] = \mathbb{E}[||w_t - \eta \nabla \ell_{I_t}(w_t) - w_*||_2^2] \]
Stochastic Gradient Descent

Proof

\[
\mathbb{E}[||w_{t+1} - w_\ast||^2_2] = \mathbb{E}[||w_t - \eta \nabla \ell_{I_t}(w_t) - w_\ast||^2_2]
\]

\[
= \mathbb{E}[||w_t - w_\ast||^2_2] - 2\eta \mathbb{E}[\nabla \ell_{I_t}(w_t)^T (w_t - w_\ast)] + \eta^2 \mathbb{E}[||\nabla \ell_{I_t}(w_t)||^2_2]
\]

\[
\leq \mathbb{E}[||w_t - w_\ast||^2_2] - 2\eta \mathbb{E}[\ell(w_t) - \ell(w_\ast)] + \eta^2 G
\]

- \mathbb{E}[\nabla \ell_{I_t}(w_t)^T (w_t - w_\ast)] = \mathbb{E}[\mathbb{E}[\nabla \ell_{I_t}(w_t)^T (w_t - w_\ast) | I_1, w_1, \ldots, I_{t-1}, w_{t-1}]]

Concavity

\[
\ell(y) \geq \ell(x) + \nabla \ell(x)^T(y-x) = \mathbb{E}[\nabla \ell(w_t)^T(w_t - w_\ast)]
\]

\[
\geq \mathbb{E}[\ell(w_t) - \ell(w_\ast)]
\]

\[
\sum_{t=1}^{T} \mathbb{E}[\ell(w_t) - \ell(w_\ast)] \leq \frac{1}{2\eta} \left(\mathbb{E}[||w_1 - w_\ast||^2_2] - \mathbb{E}[||w_{T+1} - w_\ast||^2_2] + T \eta^2 G \right)
\]

\[
\leq \frac{R}{2\eta} + \frac{T\eta G}{2}
\]
Stochastic Gradient Descent

Proof

Jensen's inequality:
For any random $Z \in \mathbb{R}^d$ and convex function $\phi : \mathbb{R}^d \rightarrow \mathbb{R}$, $\phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\ell(w_t) - \ell(w_*)]$$

$$\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$$
Stochastic Gradient Descent

Proof

Jensen’s inequality:
For any random $Z \in \mathbb{R}^d$ and convex function $\phi : \mathbb{R}^d \to \mathbb{R}$, $\phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\ell(w_t) - \ell(w_*)]$$

$$\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \leq \frac{R}{2T\eta} + \frac{\eta G}{2} \leq \sqrt{\frac{RG}{T}}$$

$$\eta = \sqrt{\frac{R}{GT}}$$
Learning Problems as Expectations

- Minimizing loss in training data:
 - Given dataset:
 - Sampled iid from some distribution \(p(x) \) on features:
 - Loss function, e.g., hinge loss, logistic loss,…
 - We often minimize loss in training data:
 \[
 \ell_D(w) = \frac{1}{N} \sum_{j=1}^{N} \ell(w, x^j)
 \]

- However, we should really minimize expected loss on all data:
 \[
 \ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx
 \]

- So, we are approximating the integral by the average on the training data
Gradient descent in Terms of Expectations

- "True" objective function:
 \[
 \ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx
 \]

- Taking the gradient:
 \[
 \nabla \ell(w) = \int p(x) \nabla \ell(w, x) dx = E_x [\nabla_w \ell(w, x)]
 \]

- "True" gradient descent rule:
 \[
 w_{t+1} = w_t - \frac{\alpha}{\sqrt{n}} E_x [\nabla_w \ell(w, x)]
 \]

- How do we estimate expected gradient?
 \[
 w_{t+1} = w_t - \frac{\alpha}{\sqrt{n}} \nabla \ell(w_t, x_t) \quad \text{where} \quad x_t \overset{iid}{\sim} p_X
 \]
SGD: Stochastic Gradient Descent

- "True" gradient: \(\nabla \ell(w) = E_x [\nabla \ell(w, x)] \)

- Sample based approximation:

- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - Very noisy!
 - Also called stochastic gradient descent
 - Among many other names
 - VERY useful in practice!!!
Perceptron

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2018
Online learning

- Click prediction for ads is a streaming data task:
 - User enters query, and ad must be selected
 - Observe x_i, and must predict y_i
 - User either clicks or doesn’t click on ad
 - Label y_i is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Update model for next time
Online classification

New point arrives at time k
The Perceptron Algorithm [Rosenblatt ’58, ’62]

- Classification setting: y in \{-1, +1\}
- Linear model
 - Prediction:

- Training:
 - Initialize weight vector:
 - At each time step:
 - Observe features:
 - Make prediction:
 - Observe true class:
 - Update model:
 - If prediction is not equal to truth
The Perceptron Algorithm [Rosenblatt '58, '62]

- Classification setting: y in $\{-1,+1\}$
- Linear model
 - Prediction: $\text{sign}(w^T x_i + b)$
- Training:
 - Initialize weight vector: $w_0 = 0, b_0 = 0$
 - At each time step:
 - Observe features: x_k
 - Make prediction: $\text{sign}(x_k^T w_k + b_k)$
 - Observe true class: y_k
 - Update model:
 - If prediction is not equal to truth
 \[
 \begin{bmatrix}
 w_{k+1} \\
 b_{k+1}
 \end{bmatrix}
 =
 \begin{bmatrix}
 w_k \\
 b_k
 \end{bmatrix}
 + y_k \begin{bmatrix}
 x_k \\
 1
 \end{bmatrix}
 \]
"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958
Linear Separability

- Perceptron guaranteed to converge if
 - Data linearly separable:
Perceptron Analysis: Linearly Separable Case

- **Theorem [Block, Novikoff]:**
 - Given a sequence of labeled examples:
 - Each feature vector has bounded norm:
 - If dataset is linearly separable:

- Then the number of mistakes made by the online perceptron on any such sequence is bounded by
Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it’s done for ever!
 - Even if you see infinite data
Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it’s done for ever!
 - Even if you see infinite data

- Perceptron is useless in practice!
 - Real world not linearly separable
 - If data not separable, cycles forever and hard to detect
 - Even if separable may not give good generalization accuracy (small margin)
What is the Perceptron Doing??

- When we discussed logistic regression:
 - Started from maximizing conditional log-likelihood

- When we discussed the Perceptron:
 - Started from description of an algorithm

- What is the Perceptron optimizing????
Support Vector Machines

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2018
Linear classifiers – Which line is better?
Pick the one with the largest margin!
Pick the one with the largest margin!

Distance from x_0 to hyperplane defined by $x^T w + b = 0$?
Pick the one with the largest margin!

Distance from \(x_0 \) to hyperplane defined by \(x^T w + b = 0 \)?

If \(\tilde{x}_0 \) is the projection of \(x_0 \) onto the hyperplane then

\[
||x_0 - \tilde{x}_0||_2 = |(x_0^T - \tilde{x}_0)^T \frac{w}{||w||_2}|
\]

\[
= \frac{1}{||w||_2} |x_0^T w - \tilde{x}_0^T w|
\]

\[
= \frac{1}{||w||_2} |x_0^T w + b|
\]
Pick the one with the largest margin!

Distance of \(x_0 \) from hyperplane \(x^T w + b \):

\[
\frac{1}{||w||_2} (x_0^T w + b)
\]

Optimal Hyperplane

\[
\max_{w,b} \gamma \\
\text{subject to } \frac{1}{||w||_2} y_i (x_i^T w + b) \geq \gamma \quad \forall i
\]
Pick the one with the largest margin!

Distance of x_0 from hyperplane $x^T w + b$:
$$\frac{1}{\|w\|_2} (x_0^T w + b)$$

Optimal Hyperplane

$$\max_{w,b} \gamma$$
$$\text{subject to } \frac{1}{\|w\|_2} y_i (x_i^T w + b) \geq \gamma \quad \forall i$$

Optimal Hyperplane (reparameterized)

$$\min_{w,b} \|w\|_2^2$$
$$\text{subject to } y_i (x_i^T w + b) \geq 1 \quad \forall i$$
Pick the one with the largest margin!

- Solve efficiently by many methods, e.g.,
 - quadratic programming (QP)
 - Well-studied solution algorithms
 - Stochastic gradient descent
 - Coordinate descent (in the dual)

$$\min_{w,b} ||w||_2^2$$
subject to $y_i(x_i^T w + b) \geq 1 \quad \forall i$
What if the data is still not linearly separable?

If data is linearly separable

\[
\min_{w,b} \|w\|_2^2 \quad \text{s.t.} \quad y_i(x_i^T w + b) \geq 1 \quad \forall i
\]
What if the data is still not linearly separable?

- If data is linearly separable
 \[
 \min_{w,b} \frac{1}{||w||_2^2} \quad y_i(x_i^Tw + b) \geq 1 \quad \forall i
 \]

- If data is not linearly separable, some points don’t satisfy margin constraint:
 \[
 \min_{w,b} \frac{1}{||w||_2^2} \quad y_i(x_i^Tw + b) \geq 1 - \xi_i \quad \forall i
 \]

\[\xi_i \geq 0, \sum_{j=1}^n \xi_j \leq \nu\]
What if the data is still not linearly separable?

- If data is linearly separable
 \[
 \min_{w,b} \|w\|_2^2 \\
 y_i(x_i^T w + b) \geq 1 \quad \forall i
 \]

- If data is not linearly separable, some points don’t satisfy margin constraint:
 \[
 \min_{w,b} \|w\|_2^2 \\
 y_i(x_i^T w + b) \geq 1 - \xi_i \quad \forall i \\
 \xi_i \geq 0, \sum_{j=1}^{n} \xi_j \leq \nu
 \]

- What are “support vectors?”
SVM as penalization method

- Original quadratic program with linear constraints:

\[
\begin{align*}
\min_{w,b} & \quad \|w\|_2^2 \\
y_i (x_i^T w + b) & \geq 1 - \xi_i \quad \forall i \\
\xi_i & \geq 0, \quad \sum_{j=1}^{n} \xi_j \leq \nu
\end{align*}
\]
SVM as penalization method

- Original quadratic program with linear constraints:

 \[
 \min_{w,b} \|w\|_2^2 \\
 y_i(x_i^Tw + b) \geq 1 - \xi_i \quad \forall i \\
 \xi_i \geq 0, \sum_{j=1}^{n} \xi_j \leq \nu
 \]

- Using same constrained convex optimization trick as for lasso:

 For any \(\nu \geq 0 \) there exists a \(\lambda \geq 0 \) such that the solution the following solution is equivalent:

 \[
 \sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^Tw)\} + \lambda \|w\|_2^2
 \]
Machine Learning Problems

- Have a bunch of iid data of the form:

\[\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:

Each \(\ell_i(w) \) is convex.

Hinge Loss: \(\ell_i(w) = \max\{0, 1 - y_i x_i^T w\} \)

Logistic Loss: \(\ell_i(w) = \log(1 + \exp(-y_i x_i^T w)) \)

Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)

How do we solve for \(w \)? The last two lectures!
Perceptron is optimizing what?

Perceptron update rule:

\[
\begin{bmatrix}
 w_{k+1} \\
 b_{k+1}
\end{bmatrix} = \begin{bmatrix}
 w_k \\
 b_k
\end{bmatrix} + y_k \begin{bmatrix}
 x_k \\
 1
\end{bmatrix} 1\{y_i(b + x_i^T w) < 0\}
\]

SVM objective:

\[
\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2 = \sum_{i=1}^{n} \ell_i(w, b)
\]

\[
\nabla_w \ell_i(w, b) = \begin{cases}
-x_i y_i + \frac{2\lambda}{n} w & \text{if } y_i(b + x_i^T w) < 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
\nabla_b \ell_i(w, b) = \begin{cases}
-y_i & \text{if } y_i(b + x_i^T w) < 1 \\
0 & \text{otherwise}
\end{cases}
\]

Perceptron is just SGD on SVM with \(\lambda = 0, \eta = 1\)!
SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?
SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

- For classification loss, logistic and svm are comparable
- Multiclass setting:
 - Softmax naturally generalizes logistic regression
 - SVMs have
- What about good old least squares?
What about multiple classes?