Is the test error unbiased for these programs?

```python
# Given dataset of 1000-by-50 feature matrix X, and 1000-by-1 labels vector mu
mu = np.mean(X, axis=0)
X = X - mu

idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TEST = idx[900:]

ytrain = y[TRAIN]
Xtrain = X[TRAIN,:]

w = np.linalg.solve( np.dot(Xtrain.T, Xtrain), np.dot(Xtrain.T, ytrain) )
b = np.mean(ytrain)

ytest = y[TEST]
Xtest = X[TEST,:]

train_error = np.dot( np.dot(Xtrain, w)+b - ytrain, np.dot(Xtrain, w)+b - ytrain )/len(TRAIN)
test_error = np.dot( np.dot(Xtest, w)+b - ytest, np.dot(Xtest, w)+b - ytest )/len(.TEST)

print('Train error = ', train_error)
print('Test error = ', test_error)

No. Preprocessing by de-meaning using whole (TEST) set.
```
Is the test error unbiased for this program?

```python
# Given dataset of 1000-by-50 feature
# matrix X, and 1000-by-1 labels vector
mu = np.mean(X, axis=0)
x = X - mu

idx = np.random.permutation(1000)
TRAIN = idx[0:800]
VAL = idx[800:900]
TEST = idx[900:]

y_train = y[TRAIN]
Xtrain = X[TRAIN,:]
y_val = y[VAL]
Xval = X[VAL,:]

e = np.zeros(50)
for d in range(1,51):
    w, b = fit(Xtrain[:,0:d], y_train)
yval_hat = predict(w, b, Xval[:,0:d])
e[d-1] = np.mean((yval_hat-yval)**2)
d_best = np.argmin(e)+1
w, b = fit(Xtrain[:,0:d_best], y_train)

X_tot = np.concatenate((Xtrain, Xval), axis=0)
ytot = np.concatenate((y_train, yval), axis=0)

test_hat = predict(w, b, X_tot[:,0:d_best])
tot_train_error = np.mean((ytot_hat-ytot)**2)
test_hat = predict(w, b, Xtest[:,0:d_best])
test_error = np.mean((ytest_hat-ytest)**2)

print('Train error = ', train_error)
print('Test error = ', test_error)
```

```python
def fit(Xin, Yin):
    mu = np.mean(Xin, axis=0)
    Xin = Xin - mu
    w = np.linalg.solve( np.dot(Xin.T, Xin),
                        np.dot(Xin.T, Yin) )
    b = np.mean(Yin) - np.dot(w, mu)
    return w, b

def predict(w, b, Xin):
    return np.dot(Xin, w)+b
```

\[
f(x) = (x - \mu)^T w + c = \frac{1}{n} \sum_{i=1}^{n} y_i^c
\]

(see non-annotated slides for correct example)
Simple Variable Selection
LASSO: Sparse Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 9, 2016
Sparsity

Vector w is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If $\text{size}(w) = 100$ Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If w is sparse, prediction computation only depends on number of non-zeros

$$\hat{w}_{LS} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2$$
Sparsity

Vector \mathbf{w} is sparse, if many entries are zero

- **Very useful for many tasks, e.g.,**
 - **Efficiency**: If $\text{size}(\mathbf{w}) = 100$ Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If \mathbf{w} is sparse, prediction computation only depends on number of non-zeros
 - **Interpretability**: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?

\[
\hat{\mathbf{w}}_{LS} = \arg \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2
\]
Sparsity

\[\hat{w}_{LS} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \]

Vector \(\mathbf{w} \) is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If size(\(\mathbf{w} \)) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If \(\mathbf{w} \) is sparse, prediction computation only depends on number of non-zeros
 - **Interpretability**: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?

- How do we find “best” subset among all possible?

Figure from Tom Mitchell
Greedy model selection algorithm

- Pick a dictionary of features
 - e.g., cosines of random inner products

- Greedy heuristic:
 - Start from empty (or simple) set of features \(F_0 = \emptyset \)
 - Run learning algorithm for current set of features \(F_t \)
 - Obtain weights for these features
 - Select next best feature \(h_i(x)^* \)
 - e.g., \(h_j(x) \) that results in lowest training error learner when using \(F_t + \{h_j(x)^*\} \)
 - \(F_{t+1} \leftarrow F_t + \{h_i(x)^*\} \)
 - Recurse
Greedy model selection

- Applicable in many other settings:
 - Considered later in the course:
 - Logistic regression: Selecting features (basis functions)
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - Finding the best set of k features is computationally intractable!
 - Sometimes you can prove something strong about it…
When do we stop???

Greedy heuristic:

- ...
- Select **next best feature** X_i^*
 - E.g. $h_j(x)$ that results in lowest training error learner when using $F_t + \{h_j(x)^*\}$

- Recurse

 When do you stop???
 - When training error is low enough?
 - When test set error is low enough?
 - Using cross validation?

Is there a more principled approach?
Recall Ridge Regression

- Ridge Regression objective:

\[
\hat{w}_{ridge} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|_2^2
\]
Ridge vs. Lasso Regression

- Ridge Regression objective:
 \[\hat{w}_{ridge} = \arg\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|_2^2 \]

- Lasso objective:
 \[\hat{w}_{lasso} = \arg\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|_1 \]
Penalized Least Squares

Ridge: \(r(w) = \|w\|^2 \)
Lasso: \(r(w) = \|w\|_1 \)

\[\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w) \]
Penalized Least Squares

Ridge: \(r(w) = \|w\|_2^2 \) \hspace{1cm} Lasso: \(r(w) = \|w\|_1 \)

\[
\hat{w}_r = \arg\min_w \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2 + \lambda r(w)
\]

For any \(\lambda \geq 0 \) for which \(\hat{w}_r \) achieves the minimum, there exists a \(\nu \geq 0 \) such that

\[
\hat{w}_r = \arg\min_w \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2 \quad \text{subject to } r(w) \leq \nu
\]
Penalized Least Squares

Ridge: \(r(w) = \|w\|_2^2 \)
Lasso: \(r(w) = \|w\|_1 \)

\[
\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)
\]

For any \(\lambda \geq 0 \) for which \(\hat{w}_r \) achieves the minimum, there exists a \(\nu \geq 0 \) such that

\[
\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \quad \text{subject to } r(w) \leq \nu
\]
Optimizing the LASSO Objective

- LASSO solution:

\[
\hat{w}_{\text{lasso}}, \hat{b}_{\text{lasso}} = \arg\min_{w, b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2 + \lambda \|w\|_1
\]

\[
\hat{b}_{\text{lasso}} = \arg\min_{w, b} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{w}_{\text{lasso}})
\]
Optimizing the LASSO Objective

- LASSO solution:

\[
\hat{w}_{\text{lasso}}, \hat{b}_{\text{lasso}} = \arg \min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2 + \lambda ||w||_1
\]

\[
\hat{b}_{\text{lasso}} = \arg \min_{w,b} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{w}_{\text{lasso}})
\]

So as usual, preprocess to make sure that \(\frac{1}{n} \sum_{i=1}^{n} y_i = 0, \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \) so we don’t have to worry about an offset.
Optimizing the LASSO Objective

- **LASSO solution:**

\[
\hat{w}_{\text{lasso}}, \hat{b}_{\text{lasso}} = \arg \min_{w, b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2 + \lambda ||w||_1
\]

\[
\hat{b}_{\text{lasso}} = \arg \min_{w, b} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{w}_{\text{lasso}}))
\]

So as usual, preprocess to make sure that \(\frac{1}{n} \sum_{i=1}^{n} y_i = 0, \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \)

so we don’t have to worry about an offset.

\[
\hat{w}_{\text{lasso}} = \arg \min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_1
\]

How do we solve this?
Coordinate Descent

- Given a function, we want to find minimum

- Often, it is easy to find minimum along a single coordinate:

- How do we pick next coordinate?
 - Randomly
 - Random Robin

- Super useful approach for *many* problems
 - Converges to optimum in some cases, such as LASSO
Fix any \(j \in \{1, \ldots, d\} \)

\[
\sum_{i=1}^{n} (y_i - \mathbf{x}_i^T w)^2 + \lambda |w|_1 = \sum_{i=1}^{n} \left(y_i - \sum_{k=1}^{d} x_{i,k} w_k \right)^2 + \lambda \sum_{k=1}^{d} |w_k|
\]

\[
= \sum_{i=1}^{n} \left((y_i - \sum_{k \neq j} x_{i,k} w_k) - x_{i,j} w_j \right)^2 + \lambda \sum_{k \neq j} |w_k| + \lambda |w_j|
\]
Optimizing LASSO Objective One Coordinate at a Time

Fix any \(j \in \{1, \ldots, d\} \)

\[
\sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2 + \lambda \|w\|_1 = \sum_{i=1}^{n} \left(y_i - \sum_{k=1}^{d} x_{i,k} w_k \right)^2 + \lambda \sum_{k=1}^{d} |w_k|
\]

\[
= \sum_{i=1}^{n} \left(\left(y_i - \sum_{k \neq j} x_{i,k} w_k \right) - x_{i,j} w_j \right)^2 + \lambda \sum_{k \neq j} |w_k| + \lambda |w_j|
\]

Initialize \(\hat{w}_k = 0 \) for all \(k \in \{1, \ldots, d\} \)

Loop over \(j \in \{1, \ldots, n\} \):

\(r_i^{(j)} = y_i - \sum_{k \neq j} x_{i,j} \hat{w}_k \)

\(\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j| \)
Convex Functions

- Equivalent definitions of convexity:

 \[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y, \lambda \in [0, 1] \]

 \[f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \]

- **Gradients** lower bound convex functions and are unique at \(x \) iff function differentiable at \(x \)

- **Subgradients** generalize gradients to non-differentiable points:

 ◯ Any supporting hyperplane at \(x \) that lower bounds entire function

 \[g \text{ is a subgradient at } x \text{ if } f(y) \geq f(x) + g^T(y - x) \]
Taking the Subgradient

\[\hat{w}_j = \arg\min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j| \]

- Convex function is minimized at \(w \) if 0 is a sub-gradient at \(w \).

\[g \text{ is a subgradient at } x \text{ if } f(y) \geq f(x) + g^T (y - x) \]

\[
\partial_{w_j} |w_j| = \begin{cases}
1 & \text{if } w_j > 0 \\
[-1, 1] & \text{if } w_j = 0 \\
-1 & \text{if } w_j < 0
\end{cases}
\]

\[
\partial_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 = \\
\sum_{i \neq j} 2 \left(r_i^{(j)} - x_{i,j} w_j \right) (-x_{i,j})
\]

©2018 Kevin Jamieson
\[g_j = \arg\min_{\theta_j} \sum_{i=1}^{n} (r_{ij}(\theta_j) - x_{ij})^2 + \theta_j^2 \]
Setting Subgradient to 0

\[
\partial w_j \left(\sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j| \right) = \begin{cases}
 a_j w_j - c_j - \lambda = 0 & \text{if } w_j \leq 0 \\
 [-c_j - \lambda, -c_j + \lambda] & \text{if } w_j = 0 \\
 a_j w_j - c_j + \lambda & \text{if } w_j > 0
\end{cases}
\]

\[
a_j = \left(\sum_{i=1}^{n} x_{i,j}^2 \right) \quad c_j = 2 \left(\sum_{i=1}^{n} r_i^{(j)} x_{i,j} \right)
\]

\[
\omega_j = \frac{c_j + \lambda}{a_j} < 0 \\
\lambda < -c_j
\]

\[|\lambda| \leq |c_j|\]
Setting Subgradient to 0

\[\partial_{w_j} \left(\sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j| \right) = \begin{cases}
 a_j w_j - c_j - \lambda & \text{if } w_j < 0 \\
 [-c_j - \lambda, -c_j + \lambda] & \text{if } w_j = 0 \\
 a_j w_j - c_j + \lambda & \text{if } w_j > 0
\end{cases} \]

\[a_j = \left(\sum_{i=1}^{n} x_{i,j}^2 \right) \quad c_j = 2 \left(\sum_{i=1}^{n} r_i^{(j)} x_{i,j} \right) \]

\[\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j| \]

\[\hat{w}_j = \begin{cases}
 (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\
 0 & \text{if } |c_j| \leq \lambda \\
 (c_j - \lambda)/a_j & \text{if } c_j > \lambda
\end{cases} \]

\(w \) is a minimum if 0 is a sub-gradient at \(w \)
Soft Thresholding

\[\hat{w}_j = \begin{cases}
 (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\
 0 & \text{if } |c_j| \leq \lambda \\
 (c_j - \lambda)/a_j & \text{if } c_j > \lambda
\end{cases} \]

\[a_j = \sum_{i=1}^{n} x_{i,j}^2 \]

\[c_j = 2 \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{i,k} w_k \right) x_{i,j} \]
Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence (initialize $w=0$)
 - Pick a coordinate l at (random or sequentially)
 - Set:

 $\hat{w}_j = \begin{cases}
 (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\
 0 & \text{if } |c_j| \leq \lambda \\
 (c_j - \lambda)/a_j & \text{if } c_j > \lambda
 \end{cases}$

 - Where:

 $a_j = \sum_{i=1}^{n} x_{i,j}^2$

 $c_j = 2 \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{i,k} \hat{w}_k \right) x_{i,j}$

- For convergence rates, see Shalev-Shwartz and Tewari 2009
- Other common technique = LARS
 - Least angle regression and shrinkage, Efron et al. 2004
Recall: *Ridge Coefficient Path*

- Typical approach: select λ using cross validation

From Kevin Murphy textbook
Now: **LASSO Coefficient Path**

From Kevin Murphy textbook
What you need to know

- **Variable Selection**: find a sparse solution to learning problem
- **L_1 regularization** is one way to do variable selection
 - Applies beyond regression
 - Hundreds of other approaches out there
- **LASSO** objective non-differentiable, but **convex** → Use subgradient
- No closed-form solution for minimization → Use coordinate descent
- **Shooting algorithm** is simple approach for solving LASSO
Classification
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 9, 2016
THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS
Weather prediction revisited

Temperature: 63°F
Reading Your Brain, Simple Example

Pairwise classification accuracy: 85%

Person

Animal
Binary Classification

- **Learn**: \(f: X \rightarrow Y \)
 - \(X \) – features
 - \(Y \) – target classes

- **Loss function**: \(\mathbb{I} \{ f(X) \neq Y \} \) “0/1 Loss”

- **Expected loss of \(f \)**:

\[
\mathbb{E}_{xy} \left[\mathbb{I} \{ f(x) \neq y \} \right] = \mathbb{E}_{X} \left[\mathbb{E}_{Y|X} \left[\mathbb{I} \{ f(x) \neq y \} | X = x \right] \right]
\]

- Suppose you know \(P(Y|X) \) exactly, how should you classify?
 - Bayes optimal classifier:

\[
f(x) = \arg \max_{y} P(Y = y | X = x)
\]
Binary Classification

- **Learn:** $f : X \rightarrow Y$
 - X – features
 - Y – target classes
 $Y \in \{0, 1\}$
- **Loss function:** $\ell(f(x), y) = 1\{f(x) \neq y\}$
- **Expected loss of f:**
 \[
 E_{XY}[1\{f(X) \neq Y\}] = E_X[E_{Y|X}[1\{f(x) \neq Y\}|X = x]]
 \]
 \[
 E_{Y|X}[1\{f(x) \neq Y\}|X = x] = 1\{f(x) = 1\}P(Y = 0|X = x) + 1\{f(x) = 0\}P(Y = 1|X = x)
 \]
- **Suppose you know $P(Y|X)$ exactly, how should you classify?**
 - Bayes optimal classifier:
 $f(x) = \arg\max_y P(Y = y | X = x)$
Link Functions

- Estimating \(P(Y|X) \): Why not use standard linear regression?

- Combining regression and probability?
 - Need a mapping from real values to [0,1]
 - A link function!
Logistic Regression

Learn $P(Y|X)$ directly

- Assume a particular functional form for link function
- Sigmoid applied to a linear function of the input features:

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Logistic function (or Sigmoid):

$$\frac{1}{1 + exp(-z)}$$

Features can be discrete or continuous!
Understanding the sigmoid

\[g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}} \]

\[w_0=-2, \ w_1=-1 \]
\[w_0=0, \ w_1=-1 \]
\[w_0=0, \ w_1=-0.5 \]
Sigmoid for binary classes

\[P(Y = 0|w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)} \]

\[P(Y = 1|w, X) = 1 - P(Y = 0|w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)} \]

\[\frac{P(Y = 1|w, X)}{P(Y = 0|w, X)} = \]
Sigmoid for binary classes

\[P(Y = 0|w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)} \]

\[P(Y = 1|w, X) = 1 - P(Y = 0|w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)} \]

\[\frac{P(Y = 1|w, X)}{P(Y = 0|w, X)} = \exp(w_0 + \sum_k w_k X_k) \]

\[\log \frac{P(Y = 1|w, X)}{P(Y = 0|w, X)} = w_0 + \sum_k w_k X_k \]

Linear Decision Rule!
Logistic Regression – a Linear classifier

\[
g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}
\]

\[
\ln \frac{P(Y = 0 | X)}{P(Y = 1 | X)} = w_0 + \sum_i w_i X_i
\]
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^{n} \) \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
P(Y = -1|x, w) = \frac{1}{1 + \exp(w^T x)}
\]

\[
P(Y = 1|x, w) = \frac{\exp(w^T x)}{1 + \exp(w^T x)}
\]

- This is equivalent to:

\[
P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}
\]

- So we can compute the maximum likelihood estimator:

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^{n} P(y_i|x_i, w)
\]
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^n \) \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^n P(y_i|x_i, w) \quad P(Y = y|x, w) = \frac{1}{1 + \exp(-yw^T x)}
\]

\[
= \arg \min_w \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T w))
\]
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^n \)
 \(x_i \in \mathbb{R}^d \),
 \(y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^n P(y_i|x_i, w) \\
= \arg \min_w \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T w))
\]

Logistic Loss:
\[
\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))
\]

Squared error Loss:
\[
\ell_i(w) = (y_i - x_i^T w)^2 \quad \text{(MLE for Gaussian noise)}
\]
Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^{n} \) \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^{n} P(y_i | x_i, w) \\
= \arg \min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) = J(w)
\]

What does \(J(w) \) look like? Is it convex?
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^{n} \), \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^{n} P(y_i | x_i, w) \quad P(Y = y | x, w) = \frac{1}{1 + \exp(-yw^T x)}
\]

\[
= \arg \min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) = J(w)
\]

Good news: \(J(w) \) is convex function of \(w \), no local optima problems

Bad news: no closed-form solution to maximize \(J(w) \)

Good news: convex functions easy to optimize
Linear Separability

$$\arg\min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))$$

When is this loss small?
Large parameters \rightarrow Overfitting

- If data is linearly separable, weights go to infinity

- In general, leads to overfitting:
 - Penalizing high weights can prevent overfitting…
Regularized Conditional Log Likelihood

- Add regularization penalty, e.g., L_2:

\[
\arg\min_{w,b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i \left(x_i^T w + b \right)) \right) + \lambda \|w\|^2_2
\]

Be sure to not regularize the offset b!
Gradient Descent

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 11, 2016
Machine Learning Problems

- Have a bunch of iid data of the form:
 \[\left\{ (x_i, y_i) \right\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.
 \[\sum_{i=1}^{n} \ell_i(w) \]
Machine Learning Problems

- Have a bunch of iid data of the form:
 \[
 \{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}
 \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) **is convex.**

\[\sum_{i=1}^{n} \ell_i(w) \]

\(g \) is a subgradient at \(x \) if
\[f(y) \geq f(x) + g^T(y - x) \]

\(f \) convex:
\[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y, \lambda \in [0, 1] \]
\[f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \forall x, y \]
Machine Learning Problems

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.

 Logistic Loss: \(\ell_i(w) = \log(1 + \exp(-y_i x_i^T w)) \)

 Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)
Least squares

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:

Each \(\ell_i(w) \) is convex.

Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)

How does software solve:

\[\frac{1}{2} \|Xw - y\|_2^2 \]
Least squares

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.

Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)

How does software solve: \(\frac{1}{2} \| Xw - y \|_2^2 \)

...its complicated:

Do you need high precision?
Is \(X \) column/row sparse?
Is \(\hat{w}_{LS} \) sparse?
Is \(X^T X \) “well-conditioned”?
Can \(X^T X \) fit in cache/memory?

(LAPACK, BLAS, MKL...)
Taylor Series Approximation

- Taylor series in one dimension:

\[f(x + \delta) = f(x) + f'(x)\delta + \frac{1}{2} f''(x)\delta^2 + \ldots \]

- Gradient descent:
Taylor Series Approximation

- Taylor series in d dimensions:

$$f(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \ldots$$

- Gradient descent:
Gradient Descent

\[f(w) = \frac{1}{2} \| Xw - y \|_2^2 \]

\[w_{t+1} = w_t - \eta \nabla f(w_t) \]

\[\nabla f(w) = \]
Gradient Descent \[f(w) = \frac{1}{2} \|Xw - y\|^2 \]

\[w_{t+1} = w_t - \eta \nabla f(w_t) \]

\[(w_{t+1} - w_*) = (I - \eta X^T X)(w_t - w_*) \]

\[= (I - \eta X^T X)^{t+1}(w_0 - w_*) \]

Example:

\[X = \begin{bmatrix} 10^{-3} & 0 \\ 0 & 1 \end{bmatrix} \quad y = \begin{bmatrix} 10^{-3} \\ 1 \end{bmatrix} \quad w_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad w_* = \]

©Kevin Jamieson 2017
Taylor Series Approximation

- Taylor series in one dimension:

\[f(x + \delta) = f(x) + f'(x)\delta + \frac{1}{2}f''(x)\delta^2 + \ldots \]

- Newton’s method:
Taylor Series Approximation

- Taylor series in d dimensions:

$$f(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \ldots$$

- Newton’s method:
Newton’s Method

\[f(w) = \frac{1}{2} \| Xw - y \|_2^2 \]

\[\nabla f(w) = \]

\[\nabla^2 f(w) = \]

\(v_t \) is solution to: \(\nabla^2 f(w_t) v_t = -\nabla f(w_t) \)

\(w_{t+1} = w_t + \eta v_t \)
Newton’s Method

\[
f(w) = \frac{1}{2} \|Xw - y\|_2^2
\]

\[
\nabla f(w) = X^T (Xw - y)
\]

\[
\nabla^2 f(w) = X^T X
\]

\[v_t \text{ is solution to: } \nabla^2 f(w_t)v_t = -\nabla f(w_t)\]

\[w_{t+1} = w_t + \eta v_t\]

For quadratics, Newton’s method converges in one step! (Not a surprise, why?)

\[w_1 = w_0 - \eta (X^TX)^{-1}X^T(Xw_0 - y) = w_*\]
General case

In general for Newton’s method to achieve \(f(w_t) - f(w_*) \leq \epsilon \):

So why are ML problems overwhelmingly solved by gradient methods?

Hint: \(v_t \) is solution to: \(\nabla^2 f(w_t) v_t = -\nabla f(w_t) \)
General Convex case \[f(w_t) - f(w_*) \leq \epsilon \]

Newton’s method:
\[t \approx \log(\log(1/\epsilon)) \]

Gradient descent:
- **f is smooth and strongly convex:** \(aI \leq \nabla^2 f(w) \leq bI \)
- **f is smooth:** \(\nabla^2 f(w) \leq bI \)
- **f is potentially non-differentiable:** \(\|\nabla f(w)\|_2 \leq c \)

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…
Revisiting…
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 16, 2016
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^{n} \) \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg\max_w \prod_{i=1}^{n} P(y_i|x_i, w) \quad \quad \quad P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}
\]

\[
f(w) = \arg\min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))
\]

\[
\nabla f(w) =
\]