Is the test error unbiased for these programs?

```python
# Given dataset of 1000-by-50 feature
# matrix X, and 1000-by-1 labels vector
mu = np.mean(X, axis=0)
X = X - mu

idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TEST = idx[900:]

ytrain = y[TRAIN]
Xtrain = X[TRAIN, :]

# Solve for argmin_w ||Xtrain*w - ytrain||^2
w = np.linalg.solve(np.dot(Xtrain.T, Xtrain),
                    np.dot(Xtrain.T, ytrain))

b = np.mean(ytrain)

ytest = y[TEST]
Xtest = X[TEST, :]

train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,
                      np.dot(Xtrain, w)+b - ytrain)/len(TRAIN)

test_error = np.dot(np.dot(Xtest, w)+b - ytest,
                    np.dot(Xtest, w)+b - ytest)/len(TEST)

print('Train error = ', train_error)
print('Test error = ', test_error)
```
Is the test error unbiased for this program?

```python
# Given dataset of 1000-by-50 feature matrix X, and 1000-by-1 labels vector
idx = np.random.permutation(1000)
TRAIN = idx[0:800]
VAL = idx[800:900]
TEST = idx[900:]

tytrain = y[TRAIN]
Xtrain = X[TRAIN,:]
tyval = y[VAL]
Xval = X[VAL,:]

err = np.zeros(50)
for d in range(1,51):
    w, b = fit(Xtrain[:,0:d], tytrain)
    yval_hat = predict(w, b, Xval[:,0:d])
    err[d-1] = np.mean((yval_hat - tyval)**2)
d_best = np.argmin(err) + 1

Xtot = np.concatenate((Xtrain, Xval), axis=0)
ytot = np.concatenate((tytrain, tyval), axis=0)
w, b = fit(Xtot[:,0:d_best], ytot)

ytest = y[TEST]
Xtest = X[TEST,:]

ytest_hat = predict(w, b, Xtest[:,0:d_best])
tot_train_error = np.mean((ytest_hat - ytot)**2)
ytest_hat = predict(w, b, Xtest[:,0:d_best])
test_error = np.mean((ytest_hat - ytest)**2)

print('Train error =', train_error)
print('Test error =', test_error)
```

©2017 Kevin Jamieson
Simple Variable Selection
LASSO: Sparse Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 9, 2016
Sparsity

Vector \mathbf{w} is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If $\text{size}(\mathbf{w}) = 100$ Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If \mathbf{w} is sparse, prediction computation only depends on number of non-zeros

$$\hat{\mathbf{w}}_{LS} = \arg \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - x_i^T \mathbf{w})^2$$
Sparsity

Vector \mathbf{w} is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If size(\mathbf{w}) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If \mathbf{w} is sparse, prediction computation only depends on number of non-zeros
 - **Interpretability**: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?

$$\hat{\mathbf{w}}_{LS} = \arg \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - x_i^T \mathbf{w})^2$$
Sparsity

Vector w is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If size(w) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If w is sparse, prediction computation only depends on number of non-zeros
 - **Interpretability**: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?

- How do we find “best” subset among all possible?

\[
\hat{w}_{LS} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2
\]

Figure from Tom Mitchell ©2018 Kevin Jamieson
Greedy model selection algorithm

- Pick a dictionary of features
 - e.g., cosines of random inner products

- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain weights for these features
 - Select **next best feature** $h_i(x)^*$
 - e.g., $h_j(x)$ that results in lowest training error learner when using $F_t + \{h_j(x)^*\}$
 - $F_{t+1} \leftarrow F_t + \{h_i(x)^*\}$
 - Recurse
Greedy model selection

- Applicable in many other settings:
 - Considered later in the course:
 - Logistic regression: Selecting features (basis functions)
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - Finding the best set of k features is computationally intractable!
 - Sometimes you can prove something strong about it…
When do we stop???

Greedy heuristic:
- ...
- Select **next best feature** X_i^*
 - E.g. $h_j(x)$ that results in lowest training error learner when using $F_t + \{h_j(x)^*\}$

- Recurse
 - When do you stop???
 - When training error is low enough?
 - When test set error is low enough?
 - Using cross validation?

Is there a more principled approach?
Recall Ridge Regression

- Ridge Regression objective:

\[\hat{w}_{ridge} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|^2_2 \]
Ridge vs. Lasso Regression

- Ridge Regression objective:
 \[\hat{w}_{ridge} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|_2^2 \]

- Lasso objective:
 \[\hat{w}_{lasso} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|_1 \]
Penalized Least Squares

Ridge : \(r(w) = \|w\|_2^2 \)

Lasso : \(r(w) = \|w\|_1 \)

\[\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w) \]
Penalized Least Squares

\[\text{Ridge : } r(w) = \|w\|_2^2 \quad \text{Lasso : } r(w) = \|w\|_1 \]

\[\hat{w}_r = \arg\min_w \sum_{i=1}^n \left(y_i - x_i^T w \right)^2 + \lambda r(w) \]

For any \(\lambda \geq 0 \) for which \(\hat{w}_r \) achieves the minimum, there exists a \(\nu \geq 0 \) such that

\[\hat{w}_r = \arg\min_w \sum_{i=1}^n \left(y_i - x_i^T w \right)^2 \quad \text{subject to } r(w) \leq \nu \]
Penalized Least Squares

Ridge: $r(w) = ||w||_2^2$ \hspace{1cm} Lasso: $r(w) = ||w||_1$

$$\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)$$

For any $\lambda \geq 0$ for which \hat{w}_r achieves the minimum, there exists a $\nu \geq 0$ such that

$$\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \hspace{1cm} \text{subject to } r(w) \leq \nu$$
Optimizing the LASSO Objective

- LASSO solution:

\[
\hat{w}_{\text{lasso}}, \hat{b}_{\text{lasso}} = \arg \min_{w,b} \sum_{i=1}^{n} \left(y_i - (x_i^T w + b) \right)^2 + \lambda \|w\|_1
\]

\[
\hat{b}_{\text{lasso}} = \arg \min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \hat{w}_{\text{lasso}} \right)
\]
Optimizing the LASSO Objective

- LASSO solution:

\[
\hat{w}_{lasso}, \hat{b}_{lasso} = \arg\min_{w, b} \sum_{i=1}^{n} \left(y_i - (x_i^T w + b) \right)^2 + \lambda ||w||_1
\]

\[
\hat{b}_{lasso} = \arg\min_{w, b} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \hat{w}_{lasso} \right)
\]

So as usual, preprocess to make sure that \(\frac{1}{n} \sum_{i=1}^{n} y_i = 0, \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \)

so we don’t have to worry about an offset.
Optimizing the LASSO Objective

- LASSO solution:

\[\hat{w}_{lasso}, \hat{b}_{lasso} = \arg\min_{w, b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2 + \lambda ||w||_1 \]

\[\hat{b}_{lasso} = \arg\min_{w, b} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{w}_{lasso}) \]

So as usual, preprocess to make sure that \(\frac{1}{n} \sum_{i=1}^{n} y_i = 0, \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \)

so we don’t have to worry about an offset.

\[\hat{w}_{lasso} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_1 \]

How do we solve this?
Coordinate Descent

- Given a function, we want to find minimum
- Often, it is easy to find minimum along a single coordinate:

- How do we pick next coordinate?

- Super useful approach for *many* problems
 - Converges to optimum in some cases, such as LASSO
Optimizing LASSO Objective One Coordinate at a Time

Fix any $j \in \{1, \ldots, d\}$

\[
\sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|_1 = \sum_{i=1}^{n} \left(y_i - \sum_{k=1}^{d} x_{i,k} w_k \right)^2 + \lambda \sum_{k=1}^{d} |w_k|
\]

\[
= \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{i,k} w_k \right)^2 + \lambda \sum_{k \neq j} |w_k| + \lambda |w_j|
\]
Optimizing LASSO Objective One Coordinate at a Time

Fix any \(j \in \{1, \ldots, d\} \)

\[
\sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda |w|_1 = \sum_{i=1}^{n} \left(y_i - \sum_{k=1}^{d} x_{i,k} w_k \right)^2 + \lambda \sum_{k=1}^{d} |w_k|
\]

\[
= \sum_{i=1}^{n} \left(\left(y_i - \sum_{k \neq j} x_{i,k} w_k \right) - x_{i,j} w_j \right)^2 + \lambda \sum_{k \neq j} |w_k| + \lambda |w_j|
\]

Initialize \(\hat{w}_k = 0 \) for all \(k \in \{1, \ldots, d\} \)

Loop over \(j \in \{1, \ldots, n\} \):

\[
r_i^{(j)} = y_i - \sum_{k \neq j} x_{i,j} \hat{w}_k
\]

\[
\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j|
\]
Convex Functions

- Equivalent definitions of convexity:

 \[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y, \lambda \in [0, 1] \]
 \[f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \forall x, y \]

- **Gradients** lower bound convex functions and are unique at \(x \) iff function differentiable at \(x \)

- **Subgradients** generalize gradients to non-differentiable points:
 - Any supporting hyperplane at \(x \) that lower bounds entire function

 \[g \text{ is a subgradient at } x \text{ if } f(y) \geq f(x) + g^T(y - x) \]
Taking the Subgradient

\[\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} (r_i^{(j)} - x_{i,j}w_j)^2 + \lambda|w_j| \]

\(g \) is a subgradient at \(x \) if \(f(y) \geq f(x) + g^T (y - x) \)

- Convex function is minimized at \(w \) if 0 is a sub-gradient at \(w \).

\[\partial_{w_j} |w_j| = \]

\[\partial_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j}w_j \right)^2 = \]
Setting Subgradient to 0

\[
\partial_w \left(\sum_{i=1}^{n} \left(r_{i}^{(j)} - x_{i,j} w \right)^2 + \lambda |w| \right) = \begin{cases}
 w_j - c_j - \lambda & \text{if } w_j < 0 \\
 [-c_j - \lambda, -c_j + \lambda] & \text{if } w_j = 0 \\
 a_j w_j - c_j + \lambda & \text{if } w_j > 0
\end{cases}
\]

\[
a_j = \left(\sum_{i=1}^{n} x_{i,j}^2 \right) \quad c_j = 2 \left(\sum_{i=1}^{n} r_{i}^{(j)} x_{i,j} \right)
\]
Setting Subgradient to 0

$$
\partial w_j \left(\sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j| \right) = \begin{cases}
 a_j w_j - c_j - \lambda & \text{if } w_j < 0 \\
 [-c_j - \lambda, -c_j + \lambda] & \text{if } w_j = 0 \\
 a_j w_j - c_j + \lambda & \text{if } w_j > 0
\end{cases}
$$

$$
\begin{align*}
 a_j &= (\sum_{i=1}^{n} x_{i,j}^2) \\
 c_j &= 2(\sum_{i=1}^{n} r_i^{(j)} x_{i,j})
\end{align*}
$$

$$
\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j|
$$

\[w\] is a minimum if 0 is a sub-gradient at \[w\]

$$
\hat{w}_j = \begin{cases}
 (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\
 0 & \text{if } |c_j| \leq \lambda \\
 (c_j - \lambda)/a_j & \text{if } c_j > \lambda
\end{cases}
$$
Soft Thresholding

\[\hat{w}_j = \begin{cases}
(c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\
0 & \text{if } |c_j| \leq \lambda \\
(c_j - \lambda)/a_j & \text{if } c_j > \lambda
\end{cases} \]

\[a_j = \sum_{i=1}^{n} x_{i,j}^2 \]

\[c_j = 2 \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{i,k} w_k \right) x_{i,j} \]
Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence (initialize w=0)
 - Pick a coordinate \(l \) at (random or sequentially)
 - Set:
 \[
 \hat{w}_j = \begin{cases}
 (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\
 0 & \text{if } |c_j| \leq \lambda \\
 (c_j - \lambda)/a_j & \text{if } c_j > \lambda
 \end{cases}
 \]
 - Where:
 \[
 a_j = \sum_{i=1}^{n} x_{i,j}^2, \quad c_j = 2 \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{i,k} \hat{w}_k \right) x_{i,j}
 \]
 - For convergence rates, see Shalev-Shwartz and Tewari 2009
 - Other common technique = LARS
 - Least angle regression and shrinkage, Efron et al. 2004
Recall: *Ridge Coefficient Path*

- Typical approach: select \(\lambda \) using cross validation

From Kevin Murphy textbook
Now: **LASSO Coefficient Path**

From Kevin Murphy textbook
Variable Selection: find a sparse solution to learning problem

- L_1 regularization is one way to do variable selection
 - Applies beyond regression
 - Hundreds of other approaches out there

LASSO objective non-differentiable, **but convex** \(\rightarrow\) Use subgradient

No closed-form solution for minimization \(\rightarrow\) Use coordinate descent

Shooting algorithm is simple approach for solving LASSO