Announcements

" JAE
» My office hours TODAY 3:30 pm - 4:30 pm CSE 666
» Poster Session - Pick one
* First poster session TODAY 4:30 pm - 7:30 pm CSE Atrium
« Second poster session December 12 4:30 pm - 7:30 pm CSE Atrium
« Support your peers and check out the posters!

» Poster description from website:
“We will hold a poster session in the Atrium of the Paul Allen Center.

Each team will be given a stand to present a poster summarizing the
project motivation, methodology, and results. The poster session will
give you a chance to show off the hard work you put into your project,
and to learn about the projects of your peers. We will provide poster
boards that are 32x40 inches. Both one large poster or several pinned
pages are OK (fonts should be easily readable from 5 feet away).”
» Course Evaluation: https://uw.iasystem.org/survey/200308 (or on MyUW)
» Other anonymous Google form course feedback: https://bit.ly/2rmdYAc
 Homework 3 Problem 5 “revisited”.
e Optional. Can only increase your grade, but will not hurt it.

©2018 Kevin Jamieson
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Basics of Fair ML
You work at a bank that gives loans based on credit score.

You have historical data: {(:UZ, yz) ,?’:1

creditscore T; € R
paid back loan ¥; € {0, 1}
l:f Pu;o/ Lacﬁb
If the loan defmdts (y; = 1) you receive $300 in interest
If the loan defaults (y; = 0) you lose $700

E;r Sown @ ﬂrd/a /c/ You
Pm‘cx'f = 200 ‘ﬂ7[7[;>{- ]g;z /)

ﬂé #7OO‘IP(ZZ7IL/%‘::O>
(N

Discussion based on [Hardt, Price, Srebro ’16]. See http://www.fatml.org for more resources.
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You work at a bank that gives loans based on credit score.
Boss tells you “make sure it doesn’t discriminate on race”

You have historical data: {(x;, @i, ¥;)}iq

creditscore T; € R
paid back loan ¥; € {0, 1}
race. a; € {asian, white, hispanic, black}

o Lock
If the L@E&u&t& (y; = 1) you receive $300 in interest
If the loan defaults (y; = 0) you lose $700
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Basics of Fair ML

You work at a bank that gives loans based on credit score.
Boss tells you “make sure it doesn’t discriminate on race”

You have historical data: {(x;, @i, ¥;)}iq

creditscore T; € R
paid back loan ¥; € {0, 1}
race a; € {asian, white, hispanic, black}

- Fairness through unawareness. Ignore (;, everyone gets same threshold
- Pro: simple,

- Con: features are often P(x; > tla; = 0) = P(x; > t)
proxy for protected group

Discussion based on [Hardt, Price, Srebro ’16]. See http://www.fatml.org for more resources.




Basics of Fair ML

You work at a bank that gives loans based on credit score.
Boss tells you “make sure it doesn’t discriminate on race”

You have historical data: {(x;, @i, ¥;)}iq

creditscore T; € R
paid back loan ¥; € {0, 1}
race a; € {asian, white, hispanic, black}

- Demographic parity. proportion of loans to each group is the same

- Pro: sounds fair,
- Con: groups more likely
to pay back loans penalized

]P’(xz > t[j‘af,; = D) = IP)(xz > to\ai = <>)

Discussion based on [Hardt, Price, Srebro ’16]. See http://www.fatml.org for more resources.
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You work at a bank that gives loans based on credit score.
Boss tells you “make sure it doesn’t discriminate on race”

You have historical data: {(x;, @i, ¥;)}iq

creditscore T; € R
paid back loan ¥; € {0, 1}
race a; € {asian, white, hispanic, black}

Non-default rate by FICO score CDF of FICO score by group
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Basics of Fair ML

You work at a bank that gives loans based on credit score.
Boss tells you “make sure it doesn’t discriminate on race”

You have historical data: {(x;, @i, ¥;)}iq

creditscore T; € R P(l 7f/97’5 - ([ ()
(J pod

paid back loan ¥; € {0, 1}
race a; € {asian, white, hispanic, black}

- Equal opportunity. proportion of those who would pay back loans equal
- Pro: Bayes optimal if conditional
distributions are the same, TPR=equal

- Con: needs one class to be
“good”, another “bad”

P(xz > t[l‘yz' =1,a; = D) = P(CBZ > to’yi =1,a; = <>)

Discussion based on [Hardt, Price, Srebro ’16]. See http://www.fatml.org for more resources.




Basics of Fair ML

You work at a bank that gives loans based on credit score.
Boss tells you “make sure it doesn’t discriminate on race”

You have historical data: {(x;, @i, ¥;)}iq

creditscore T; € R
paid back loan ¥; € {0, 1}
race a; € {asian, white, hispanic, black}

Per-group ROC curve
classifying non-defaulters using FICO score Zoomed in view
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Fairness, Accountability,
and Transparency

in Machine Learning
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Trees

" JEE————
Build a binary tree, splitting along axes

M
f(@)=) cml(z € Rp).




Learning decision trees
" JE
= Start from empty decision tree

= Split on next best attribute (feature)
Use, for example, information gain to select attribute

Spliton arg max IG(X;) = argmax H(Y) — H(Y | X;)
(/ (/
= Recurse
= Prune

M
X<t f(x) = Z cmI(z € Rpy).
m=1

Kevin Jamieson 2016



Trees

" S

o * Trees
f(@)=) cml(z € Rp).  have low bias, high variance
m=1
 deal with categorial variables
well
Xist * intuitive, interpretable
« good software exists
X2 < t2 X1 <ts

« Some theoretical guarantees

©2018 Kevin Jamieson 15



Random Forests

Machine Learning — CSE546
Kevin Jamieson
University of Washington

December 4, 2018
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Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to

construct a lot of “lightly correlated” P
trees and average them: b
“Bagging:” Bootstrap aggregating

©2018 Kevin Jamieson

b=1 b=2
x1<0555 x2<0.205
-
1
0
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0
1 0 o 1 [
b=4 b=5
x3<0.985 x4<-1.36
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x1<0.395 x3<0.985
R
1 10
o 1 o o
o 1 [
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Random Forrests

" S
Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}.

To make a

egression: fB(x) = m-~p/3

B Zb 1 Ty ().

Classification: Let Cb(:v) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(x)}P. ~sqri(p

©2018 Kevin Jamieson
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Random Forests

"
il
 Random Forests
 have low bias, low variance
 deal with categorial variables well
 not that intuitive or interpretable
* Notion of confidence estimates
« good software exists
« Some theoretical guarantees

 works well with default hyperparameters

©2018 Kevin Jamieson
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Machine Learning — CSE546
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Boosting
"

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 — ~

©2018 Kevin Jamieson
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Boosting
" JEE

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

©2018 Kevin Jamieson 22



Boosting
" JEE

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

« 2001 Friedman: “Practical for arbitrary losses”

©2018 Kevin Jamieson 23



Boosting
" A
1988 Kearns and Valiant; “Can weak learners be

combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost
« 2001 Friedman: “Practical for arbitrary losses”

« 2014 Tianqgi Chen: “Scale it up!” XGBoost

©2018 Kevin Jamieson 24



Boosting and Additive

Models

Machine Learning — CSE546
Kevin Jamieson
University of Washington

December 4, 2018
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Additive models

" JAE—
« Consider the first algorithm we used to get good
classification for MNIST. Given: {(zi,vi)}i-1 2, e R%,y; € {—1,1}

. Generate random functions: ¢, : R >R ¢ — 1@

n p
 Learn some WelghtS W = arg minZLoss <y“2wt¢t(xz)>

©2018 Kevin Jamieson 26



Additive models

" JAE—
« Consider the first algorithm we used to get good
classification for MNIST. Given: {(zi,yi)}i-1 z; e RYy; € {—1,1}

 Generate random functions: ¢, :R* R t=1,...,p

n p
* Learn some weights: & = argmin ) Loss <yi,zwt¢t(xi)>
1=1 t=1

 Classify new data: f(z) = sign (Z @tqﬁt(:ﬁ))

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

©2018 Kevin Jamieson 27



Additive models

" J———
« Consider the first algorithm we used to get good
classification for MNIST. Given: {(zi,yi)}i-1 z; e RYy; € {—1,1}

 Generate random functions: ¢, :R* R t=1,...,p

n p
* Learn some weights: & = argmin ) Loss <yi,zwt¢t(xi)>
1=1 t=1

 Classify new data: f(z) = sign (Z f@tqﬁt(:ﬁ))

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

n p
W, P1,...,¢ = arg min Z Loss | v, Z Wi ()
RS t=1

is in general computationally hard

©2018 Kevin Jamieson 28



Forward Stagewise Additive models

"
. 1
b(x,7) is a function with parameters v  Examples: b(z,7) = 1 _
+e V7T

Algorithm 10.2 Forward Stagewise Additive Modeling. b(:l] fy) = 1{3}3 < ’yg}
’ - —_—

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(BmsYm) = argrggl; L(yi, fm—1(z:) + Bb(zi; 7))

(b) Set fm () = fm—-1(2) + Bmb(; Ym).

Idea: greedily add one function at a time

©2018 Kevin Jamieson



Forward Stagewise Additive models

"
. 1
b(x,7) is a function with parameters v  Examples: b(z,7) = 1 _
+e V7T

Algorithm 10.2 Forward Stagewise Additive Modeling. b(:l] fy) = 1{3}3 < ’yg}
’ - —_—

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(BmsYm) = argrggl; L(yi, fm—1(z:) + Bb(zi; 7))

(b) Set fm () = fm—-1(2) + Bmb(; Ym).

Idea: greedily add one function at a time

AdaBoost: b(z,v): classifiers to {—1,1}
Ly, f(x)) = exp(=y[f(z))

©2018 Kevin Jamieson



Forward Stagewise Additive models

"
. 1
b(x,7) is a function with parameters v  Examples: b(z,7) = 1 _
+e V7T

Algorithm 10.2 Forward Stagewise Additive Modeling. b(:l] fy) = 1{3}3 < ’yg}
’ - —_—

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(BmsYm) = argrggl; L(yi, fm—1(z:) + Bb(zi; 7))

(b) Set fm () = fm—-1(2) + Bmb(; Ym).

Idea: greedily add one function at a time

Boosted Regression Trees:  L(y, f(z)) = (y — f(z))?

b(z,~): regression trees

©2018 Kevin Jamieson



Forward Stagewise Additive models

" S 1

b(x,y) is a function with parameters -y Examples: b(z,v) =

1+e 7'z
Algorithm 10.2 Forward Stagewise Additive Modeling. b(CU, f)/) = 71]_{3;3 < 72}
1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(B Ym) = argrgglzL(yi,fm_l(mi) + Bb(i;7)).
=1
(b) Set fm(z) = fm—1(2) + Bmb(z; Ym).
Idea: greedily add one function at a time
Boosted Regression Trees: L(y, f(x)) = (y — f(z))?
L(yis frm—1(zi) + Bb(zi37)) = (¥i — fm—1(zi) — ﬂb(-’fi;’Y))z
= (rim = Bb(@;7))*,  Tim = 4i — fmoa(@)

Efficient: No harder than learning regression trees!

©2018 Kevin Jamieson



Forward Stagewise Additive models

" S 1

b(x,7) is a function with parameters v  Examples: b(z,7) = 1 _
+e 7T

Algorithm 10.2 Forward Stagewise Additive Modeling. b(ZC fy) = 1{3}3 < ’yg}
’ - —_—

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute

N
(B, ¥m) = arg rgglz L(Ys, frm—1(x:) + Bb(xi;7)).

=1

(b) Set fm(z) = fm—1(z) + Bmb(z; ym)-

Idea: greedily add one function at a time
Boosted Logistic Trees: L(y, f(x)) = ylog(f(x)) + (1 — y)log(1 — f(z))

b(x,~y): regression trees

Computationally hard to update

©2018 Kevin Jamieson



Gradient Boosting

" NS

Least squares, exponential loss easy. But what about cross entropy? Huber?

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(z) = argmin,, Zfil L(y;,7)-
2. Form =1 to M:

(a) Fori=1,2,..., N compute

Tim = = [W]fﬁm—l '

(b) Fit a regression tree to the targets 7, giving terminal regions
Rim, j=1,2,...,Jm.

(c) For j =1,2,...,Jm compute

Vim = argmin L (Y, fm-1(:) +7) -
v IiER]'m

(d) Update fm(z) = fin—1(z) + 2;21 YimI(@ € Rjm).

3. Output f(z) = fu(z).

LS fit regression tree to n-dimensional gradient, take a step in that direction

©2018 Kevin Jamieson 34



Gradient Boosting

Least squares, 0/1 loss easy. But what about cross entropy? Huber?

< —— Stumps
o | —— 10 Node
—— 100 Node
—— Adaboost
[}
R
3
w
8 o
= o
; —
o
e

0 100 200

Number of Terms

©2018 Kevin Jamieson

AdaBoost uses 0/1 loss,
all other trees are minimizing
binomial deviance

35



Additive models

" JAE——
« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

©2018 Kevin Jamieson
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Additive models

" JE——
« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

 Kind of like sparsity?

©2018 Kevin Jamieson
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Additive models

" JAE
« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

 Kind of like sparsity?

« Gradient boosting generalization with good software
packages (e.g., XGBoost). Effective on Kaggle

* Robust to overfitting and can be dealt with with
“shrinkage” and “sampling”

©2018 Kevin Jamieson
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Bagging versus Boosting

" JE—
» Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

« Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

« Empirically, boosting appears to outperform bagging

©2018 Kevin Jamieson 39



Which algorithm do | use?
" S

il
TABLE 10.1. Some characteristics of different learning methods. Key: A= good,
=fair, and V¥ =poor.

Characteristic Neural SVM Trees MARS  k-NN,
Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values v v A A A

Robustness to outliers in v v A v A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v A
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