Announcements

- Proposals graded
Hypothesis testing

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 30, 2018
You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. }
and the transaction is either real ($Y=0$) or fraudulent ($Y=1$)

Hypothesis testing:

$H_0: X \sim P_0$

$H_1: X \sim P_1$

$P_k = \mathbb{P}(X = x | Y = k)$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$
Anomaly detection

Hypothesis testing:

H₀: \(X \sim P₀ \)
H₁: \(X \sim P₁ \)

Your job is to build a (possibly randomized) decision function \(\delta(x) \in \{0, 1\} \)

Bayesian Hypothesis Testing:

Assume \(\mathbb{P}(Y = 1) = \pi \)
\[
\mathbb{P}(X = x) = \pi P₁(x) + (1 - \pi)P₀(x)
\]

\(P_k = \mathbb{P}(X = x | Y = k) \)

\[
\arg \min_\delta \mathbb{P}_{XY}(Y \neq \delta(X))
\]
Hypothesis testing:

$H_0: X \sim P_0$

$H_1: X \sim P_1$

$P_k = \Pr(X = x | Y = k)$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

Minimax Hypothesis Testing:

$$\arg \min_{\delta} \max \{ \Pr(\delta(X) = 0 | Y = 1), \Pr(\delta(X) = 1 | Y = 0) \}$$
Anomaly detection

Hypothesis testing:

\[\begin{align*}
\text{H}0: \ & X \sim P_0 \\
\text{H}1: \ & X \sim P_1
\end{align*} \]

\[P_k = \mathbb{P}(X = x|Y = k) \]

Your job is to build a (possibly randomized) decision function \(\delta(x) \in \{0, 1\} \)

Neyman-Pearson Hypothesis Testing:

\[\arg \max_{\delta} \mathbb{P}(\delta(X) = 1|Y = 1), \ \text{subject to} \ \mathbb{P}(\delta(X) = 1|Y = 0) \leq \alpha \]
Neyman-Pearson Testing

Hypothesis testing:

H0: \(X \sim P_0 \)

H1: \(X \sim P_1 \)

Neyman-Pearson Hypothesis Testing:

\[
\text{arg max}_\delta \mathbb{P}(\delta(X) = 1 | Y = 1), \text{ subject to } \mathbb{P}(\delta(X) = 1 | Y = 0) \leq \alpha
\]

Theorem: The optimal test \(\delta^* \) has the form

\[
\mathbb{P}(\delta^*(X) = 1) = \begin{cases}
1 & \text{if } \frac{\mathbb{P}_1(x)}{\mathbb{P}_0(x)} > \eta \\
\gamma & \text{if } \frac{\mathbb{P}_1(x)}{\mathbb{P}_0(x)} = \eta \\
0 & \text{if } \frac{\mathbb{P}_1(x)}{\mathbb{P}_0(x)} < \eta
\end{cases}
\]

and satisfies \(\mathbb{P}(\delta^*(X) = 1 | Y = 0) = \alpha \)
Neyman-Pearson Testing

Hypothesis testing:
\[H_0: X \sim P_0 \]
\[H_1: X \sim P_1 \]

Neyman-Pearson Hypothesis Testing:
\[\arg \max_{\delta} P(\delta(X) = 1|Y = 1), \text{ subject to } P(\delta(X) = 1|Y = 0) \leq \alpha \]

Example:
\[P_0(x) \]
\[P_1(x) \]
ROC Curve

Hypothesis testing:

\[H_0: X \sim P_0 \]
\[H_1: X \sim P_1 \]

\[P_k = \mathbb{P}(X = x | Y = k) \]

Prob of Detection

\[\mathbb{P}(\delta(X) = 1 | Y = 1) \]

Prob of False Alarm

\[\mathbb{P}(\delta(X) = 1 | Y = 0) \]
p-values
You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. }
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:

H_0: $X \sim P_0$

H_1: $X \sim P_1$

$P_k = \mathbb{P}(X = x | Y = k)$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

Natural to have model for P_0 (regular purchases).
But what if we have no model for P_1 since people are strategic?
p-value

Hypothesis testing:

\[H_0: \; X \sim P_0 \]
\[H_1: \; X \sim P_1 \]

Your job is to build a (possibly randomized) decision function \(\delta(x) \in \{0, 1\} \)

Definition p-value: probability of finding the observed, or more extreme, results when the null hypothesis \(H_0 \) is true (e.g., \(X \sim P_0 \))

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., \(X \sim P_0 \))

WARNING: A small p-value is NOT evidence that \(H_1 \) is true.
p-value

Hypothesis testing:

\[H_0: X \sim P_0 \]
\[H_1: X \sim P_1 \]

Your job is to build a (possibly randomized) decision function \(\delta(x) \in \{0, 1\} \)

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., \(X \sim P_0 \))

\[P_0(x) = \mathcal{N}(x; \mu_0, \sigma^2) \]

Observe: \(x_i \in \mathbb{R} \)

p-value: \(p_i = P_0(X \geq x_i) \)

\[
= \int_{x=x_i}^{\infty} \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\mu_0)^2}{2\sigma^2}} \, dx \\
= 1 - F \left(\frac{x_i - \mu_0}{\sigma} \right)
\]

Then \(P(Z \leq t) = F(t), \quad F(Z) \in (0, 1) \)
Hypothesis testing:

\[H_0: X \sim P_0 \]
\[H_1: X \sim P_1 \]

Your job is to build a (possibly randomized) decision function \(\delta(x) \in \{0, 1\} \)

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., \(X \sim P_0 \))

Set: \(\alpha = 0.05 \)

Observe: \(x_i \in \mathbb{R} \)

p-value: \(p_i = P_0(X \geq x_i) \)

Test: If \(p_i \leq \alpha \) then reject the null hypothesis \(H_0 \)
p-value: used the **wrong** way

Hypothesis testing:

\[H_0: \ X \sim P_0 \]
\[H_1: \ X \sim P_1 \]

Your job is to build a (possibly randomized) decision function \(\delta(x) \in \{0, 1\} \)

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., \(X \sim P_0 \))

Set: \(\alpha = .05 \)

Observe: \(x_i \in \mathbb{R} \)

p-value: \(p_i = P_0(X \geq x_i) \)

Test: If \(p_i \leq \alpha \) then **reject** the null hypothesis \(H_0 \)

BAD If \(p_i > \alpha \) repeat the experiment with new \(x_i \) until \(p_i \leq \alpha \)
Each day $i=1,2,…$ you measure an iid $x_i \sim \mathcal{N}(\mu, 1)$

H0: $\mu = 0$

Under H0 the statistic $Z_i = \frac{1}{\sqrt{i}} \sum_{j=1}^{i} x_j \sim \mathcal{N}(0, 1)$

$p_i = \frac{1}{\sqrt{2\pi}} \int_{z=z_i}^{\infty} e^{-z^2/2} dz$

p-hacking
Multiple testing
Case study in adaptive sampling tradeoffs

Wild type strain with 13,071 genes

Inhibit a single gene

infect with fluorescing virus (indicating gene’s influence)

Each gene $i=1,2,\ldots,n$ you measure an $x_i \sim N(\mu_i, 1)$

$H_0(i): \mu_i = 0$

Consider procedure for individual hypothesis testing:

- **Set**: $\alpha = .05$

- **Observe**: $x_i \in \mathbb{R}$

 p-value: $p_i = P_0(X \geq x_i)$

 Test: If $p_i \leq \alpha$ then **reject** the null hypothesis H_0

Under H_0, how many genes do we expect to reject the null hypothesis?
Multiple Testing

If we make n rejections individually at level α

$$I_0 = \{i : H_0(i) \text{ is true}\}$$

$$\mathbb{E}\left[\sum_{i \in I_0} 1\{p_i \leq \alpha\}\right] = \sum_{i \in I_0} \mathbb{P}(p_i \leq \alpha) = |I_0|\alpha$$

That’s a lot of false alarms!
Multiple Testing - FWER

Family-wise error rate $FWER = \mathbb{P}(\text{reject any true null})$

$I_0 = \{i : H_0(i) \text{ is true}\}$

Bonferroni rule: Reject i if $p_i \leq \alpha/n$

$FWER = \mathbb{P}\left(\bigcup_{i \in I_0} \{p_i \leq \alpha/n\} \right) \leq \sum_{i \in I_0} \mathbb{P}(p_i \leq \alpha/n)$

$= \sum_{i \not \in I_0} \frac{\alpha}{n} = \frac{|I_0|}{n} \alpha \leq \alpha$
False discovery rate $FDR = \mathbb{E} \left[\frac{|I_0 \cap R|}{|R|} \right]$

$I_0 = \{i : H_0(i) \text{ is true}\}$

Benjamini-Hochberg procedure:

Sort p-values such that $p(1) \leq p(2) \leq \cdots \leq p(n)$

$i_{\text{max}} = \max\{i : p(i) \leq \frac{i}{n} \alpha\}$

$R = \{i : i \leq i_{\text{max}}\}$

Theorem: $BH(\alpha)$ satisfies $FDR \leq \alpha$
Bayesian Methods

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 30, 2018
MLE Recap - coin flips

Data: sequence \(D = (HHTHT\ldots) \), **\(k \) heads** out of **\(n \) flips**

Hypothesis: \(P(\text{Heads}) = \theta \), \(P(\text{Tails}) = 1 - \theta \)

\[
P(D|\theta) = \theta^k (1 - \theta)^{n-k}
\]

Maximum likelihood estimation (MLE): Choose \(\theta \) that maximizes the probability of observed data:

\[
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)
\]

\[
= \arg \max_{\theta} \log P(D|\theta)
\]

\[
\hat{\theta}_{MLE} = \frac{k}{n}
\]
What about prior

- Billionaire: Wait, I know that the coin is “close” to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way…
Bayesian Learning

- Use Bayes rule:

\[P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})} \]

- Or equivalently:

\[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta) \]

Prior belief about how coins from factory are dirt.
Bayesian Learning for Coins

\[P(\theta \mid D) \propto P(D \mid \theta)P(\theta) \]

- Likelihood function is simply Binomial:
 \[P(D \mid \theta) = \theta^H (1 - \theta)^T \]

- What about prior?
 - Represent expert knowledge

- Conjugate priors:
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution
Beta prior distribution – $P(\theta)$

\[P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim \text{Beta}(\beta_H, \beta_T) \]

- Likelihood function: $P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid D) \propto P(D \mid \theta) P(\theta)$
Posterior distribution

- Prior: \(\text{Beta}(\beta_H, \beta_T) \)
- Data: \(\alpha_H \) heads and \(\alpha_T \) tails

- Posterior distribution:
 \[
P(\theta \mid \mathcal{D}) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)
 \]
Using Bayesian posterior

- Posterior distribution:

\[P(\theta \mid D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- Bayesian inference:
 - Estimate mean

 \[E[\theta] = \int_0^1 \theta P(\theta \mid D) d\theta \]

 - Estimate arbitrary function \(f \)

 \[E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) d\theta \]

 - For arbitrary \(f \) integral is often hard to compute
MAP: Maximum a posteriori approximation

\[P(\theta \mid D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

\[E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) d\theta \]

- As more data is observed, Beta is more certain

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_\theta P(\theta \mid D) \quad E[f(\theta)] \approx f(\hat{\theta}) \]
MAP for Beta distribution

\[P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_\theta P(\theta \mid \mathcal{D}) = \]
MAP for Beta distribution

\[P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1}(1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\beta_H + \alpha_H - 1}{\beta_H + \beta_T + \alpha_H + \alpha_T - 2} \]

- Beta prior equivalent to extra coin flips
- As \(N \to 1 \), prior is “forgotten”
- But, for small sample size, prior is important!
Bayesian vs Frequentist

- Data: $\cal D$ Estimator: $\hat{\theta} = t(\cal D)$ loss: $\ell(t(\cal D), \theta)$
- Frequentists treat unknown θ as fixed and the data D as random.

- Bayesian treat the data D as fixed and the unknown θ as random
Recap for Bayesian learning

Bayesians are optimists:
• “If we model it correctly, we output most likely answer”
• Assumes one can accurately model:
 • Observations and link to unknown parameter θ: $p(x|\theta)$
 • Distribution, structure of unknown θ: $p(\theta)$

Frequentist are pessimists:
• “All models are wrong, prove to me your estimate is good”
• Makes very few assumptions, e.g. $\mathbb{E}[X^2] < \infty$ and constructs an estimator (e.g., median of means of disjoint subsets of data)
• Must analyze each estimate