Announcements

Proposals graded

Hypothesis testing

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 30, 2018

For each transaction we observe a **feature vector X**:

{ email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. }

and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:

H0:
$$X \sim P_0$$

$$P_k = \mathbb{P}(X = x | Y = k)$$

H1:
$$X \sim P_1$$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0,1\}$

©Kevin Jamieson 2018

Hypothesis testing:

H0: $X \sim P_0$

H1: $X \sim P_1$

$$P_k = \mathbb{P}(X = x | Y = k)$$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0,1\}$

Bayesian Hypothesis Testing:

Assume $\mathbb{P}(Y=1)=\pi$

$$\mathbb{P}(X = x) = \pi P_1(x) + (1 - \pi)P_0(x)$$

$$\arg\min_{\delta} \mathbb{P}_{XY}(Y \neq \delta(X))$$

Hypothesis testing:

H0:
$$X \sim P_0$$

$$P_k = \mathbb{P}(X = x | Y = k)$$

H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0,1\}$

Minimax Hypothesis Testing:

$$\arg\min_{\delta} \max \{ \mathbb{P}(\delta(X) = 0 | Y = 1), \mathbb{P}(\delta(X) = 1 | Y = 0) \}$$

Hypothesis testing:

H0:
$$X \sim P_0$$

$$P_k = \mathbb{P}(X = x | Y = k)$$

H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0,1\}$

Neyman-Pearson Hypothesis Testing:

$$\arg \max_{\delta} \mathbb{P}(\delta(X) = 1 | Y = 1)$$
, subject to $\mathbb{P}(\delta(X) = 1 | Y = 0) \le \alpha$

Neyman-Pearson Testing

Hypothesis testing:

H0: $X \sim P_0$

 $P_k = \mathbb{P}(X = x | Y = k)$

H1: $X \sim P_1$

Neyman-Pearson Hypothesis Testing:

$$\arg\max_{\delta} \mathbb{P}(\delta(X) = 1|Y = 1)$$
, subject to $\mathbb{P}(\delta(X) = 1|Y = 0) \le \alpha$

Theorem: The optimal test δ^* has the form $\mathbb{P}(\delta^*(X) = 1) = \begin{cases} 1 & \text{if } \frac{P_1(x)}{P_0(x)} > \eta \\ \gamma & \text{if } \frac{P_1(x)}{P_0(x)} = \eta \end{cases}$ $0 & \text{if } \frac{P_1(x)}{P_0(x)} < \eta$

and satisfies $\mathbb{P}(\delta^*(X) = 1|Y = 0) = \alpha$

Neyman-Pearson Testing

H0: $X \sim P_0$

H1: $X \sim P_1$

$$P_k = \mathbb{P}(X = x | Y = k)$$

Neyman-Pearson Hypothesis Testing:

 $\arg \max_{\delta} \mathbb{P}(\delta(X) = 1 | Y = 1)$, subject to $\mathbb{P}(\delta(X) = 1 | Y = 0) \le \alpha$

Example:

©Kevin Jamieson 2018

ROC Curve

H0: $X \sim P_0$

H1: $X \sim P_1$

$$P_k = \mathbb{P}(X = x | Y = k)$$

p-values

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 30, 2018

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a **feature vector X**:

{ email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. }

and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:

H0: $X \sim P_0$

 $P_k = \mathbb{P}(X = x | Y = k)$

H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0,1\}$

Natural to have model for P_0 (regular purchases). But what if we have no model for P_1 since people are strategic?

p-value

Hypothesis testing:

H0:
$$X \sim P_0$$

$$P_k = \mathbb{P}(X = x | Y = k)$$

H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0,1\}$

Definition p-value: probability of finding the observed, or more extreme, results when the null hypothesis H0 is true (e.g., $X \sim P_0$)

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., $X \sim P_0$)

WARNING: A small p-value is **NOT** evidence that H1 is true.

$$P(X>x_c|E[x]=0)$$

©Kevin Jamieson 2018 12

p-value

Hypothesis testing:

H0: $X \sim P_0$

 $P_k = \mathbb{P}(X = x | Y = k)$

H1· $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0,1\}$

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., $X \sim P_0$)

$$P_0(x) = \mathcal{N}(x; \mu_0, \sigma^2)$$

Observe: $x_i \in \mathbb{R}$

p-value: $p_i = P_0(X \ge x_i)$

$$= \int_{x=x_i}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu_0)^2/2\sigma^2} dx$$

$$= \int_{-\pi}^{\pi} \left(\frac{2i - \mu_0}{\sigma} \right)$$

$$= 1 - F\left(\frac{2i - \mu_0}{d}\right)$$

$$\neq F$$
Then $P(Z \le t) = F(t)$, $F(Z) \in (0,1)$

13 ©Kevin Jamieson 2018

p-value: used the right way

Hypothesis testing:

H0:
$$X \sim P_0$$

H1:
$$X \sim P_1$$

$$P_k = \mathbb{P}(X = x | Y = k)$$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., $X \sim P_0$)

Set: $\alpha = .05$

Observe: $x_i \in \mathbb{R}$

p-value: $\widehat{\varphi_i} = P_0(X \ge x_i)$ f_i is uniformly dist on (0,1] under the

P. (x)

Test: If $p_i \leq \alpha$ then **reject** the null hypothesis H0

©Kevin Jamieson 2018

p-value: used the wrong way

Hypothesis testing:

H0:
$$X \sim P_0$$

H1·
$$X \sim P_1$$

$$P_k = \mathbb{P}(X = x | Y = k)$$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

Definition p-value: a uniformly distributed random variable under the null hypothesis (e.g., $X \sim P_0$)

Set: $\alpha = .05$

Observe: $x_i \in \mathbb{R}$

p-value: $p_i = P_0(X \ge x_i)$

Test: If $p_i \leq \alpha$ then **reject** the null hypothesis H0

BAD If $p_i > \alpha$ repeat the experiment with new x_i until $p_i \leq \alpha$

©Kevin Jamieson 2018 15

p-value: used the wrong way

$$\widehat{\text{H0: } \mu = 0}$$

Under H0 the statistic $Z_i = \frac{1}{\sqrt{i}} \sum_{j=1}^i x_j \sim \mathcal{N}(0,1)$

16

Multiple testing

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 30, 2018

Case study in adaptive sampling tradeoffs

"Drosophila RNAi screen identifies host genes important for influenza virus replication," Nature 2008.

Each gene i=1,2,...,n you measure an
$$x_i \sim \mathcal{N}(\mu_i, 1)$$

H0(i):
$$\mu_i = 0$$

Consider procedure for individual hypothesis testing:

Set: $\alpha = .05$

- Observe: $x_i \in \mathbb{R}$

p-value: $p_i = P_0(X \ge x_i)$

Test: If $p_i \leq \alpha$ then **reject** the null hypothesis H0

Under H0, how many genes do we expect to reject the null hypothesis?

Multiple Testing

If we make n rejections individually at level α

$$I_{0} = \{i : H0(i) \text{ is true}\}$$

$$\underset{\text{falso or ar ies}}{\text{falso or ar ies}} \mathbb{E}[\sum_{i \in I_{0}} \mathbf{1}\{p_{i} \leq \alpha\}] = \sum_{i \in I_{0}} \mathbb{P}(p_{i} \leq \alpha) = I_{0}|\alpha|$$

That's a lot of false alarms!

Multiple Testing - FWER

Family-wise error rate FWER = P(reject any true null)

$$I_0 = \{i : H0(i) \text{ is true}\}$$

Bonferroni rule: Reject
$$i$$
 if $p_{i} \leq \alpha/n$ $R = \{i : \rho_{i} \leq \frac{\alpha}{n}\}$

$$FWER = \mathbb{P}\left(\bigcup_{I_{0}} \{p_{i} \leq \alpha/n\}\right) \leq \sum_{i \in I_{0}} \mathbb{P}(P_{i} \leq \alpha/n)$$

$$= \sum_{i \in I_{0}} \alpha = \frac{|I_{0}|}{n} \alpha$$

$$\leq \alpha$$

Multiple Testing - FDR

False discovery rate FDR=
$$\mathbb{E}\left[\frac{|I_0 \cap R|}{|R|}\right]$$

$$I_0 = \{i : H0(i) \text{ is true}\}$$

Benjamini-Hochberg procedure:

Sort p-values such that
$$p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(n)}$$

$$i_{\max} = \max\{i : p_{(i)} \le \frac{i}{n}\alpha\}$$

$$R = \{i : i \le i_{\max}\}$$

Theorem: BH(α) satisfies FDR $\leq \alpha$

Bayesian Methods

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 30, 2018

MLE Recap - coin flips

- Data: sequence D= (HHTHT...), k heads out of n flips
- **Hypothesis:** $P(Heads) = \theta$, $P(Tails) = 1-\theta$

$$P(\mathcal{D}|\theta) = \theta^k (1 - \theta)^{n-k}$$

 Maximum likelihood estimation (MLE): Choose θ that maximizes the probability of observed data:

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(\mathcal{D}|\theta)$$

$$= \arg \max_{\theta} \log P(\mathcal{D}|\theta)$$

$$\widehat{\theta}_{MLE} = \frac{k}{n}$$

What about prior

- Billionaire: Wait, I know that the coin is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...

Bayesian Learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

Prior belief about how coins from factory are dist

Bayesian Learning for Coins

Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
 - Represent expert knowledge
- Conjugate priors:
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Mean:

Mode:

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

Posterior distribution

• Data: α_H heads and α_T tails

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Using Bayesian posterior

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

- Bayesian inference:
 - Estimate mean

$$E[\theta] = \int_0^1 \theta P(\theta|\mathcal{D}) d\theta$$

Estimate arbitrary function f

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

For arbitrary f integral is often hard to compute

MAP: Maximum a posteriori approximation

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\widehat{\theta})$$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) =$$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\beta_H + \alpha_H - 1}{\beta_H + \beta_T + \alpha_H + \alpha_T - 2}$$

- Beta prior equivalent to extra coin flips
- As N → 1, prior is "forgotten"
- But, for small sample size, prior is important!

Bayesian vs Frequentist

- Data: \mathcal{D} Estimator: $\widehat{\theta} = t(\mathcal{D})$ loss: $\ell(t(\mathcal{D}), \theta)$
- Frequentists treat unknown θ as fixed and the data D as random.

 Bayesian treat the data D as fixed and the unknown θ as random

Recap for Bayesian learning

- "If we model it correctly, we output most likely answer"
- Assumes one can accurately model:
 - Observations and link to unknown parameter heta: p(x| heta)
 - Distribution, structure of unknown heta: p(heta)

Frequentist are pessimists:

- "All models are wrong, prove to me your estimate is good"
- Makes very few assumptions, e.g. $\mathbb{E}[X^2] < \infty$ and constructs an estimator (e.g., median of means of disjoint subsets of data)

Must analyze each estimate