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Anomaly detection
" I

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies

of purchased item, etc. }
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:
HO: X ~ P, P, =P(X =xz|Y = k)

H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}
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Anomaly detection
" I

Hypothesis testing:
HO: X ~ P, P, =P(X =x|Y = k)
H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}

Bayesian Hypothesis Testing:
Assume P(Y =1)=7
P(X =) = 7P (z) + (1 — 7) Py ()

—

arg méinIP’Xy(Y # 0(X))

—

(t- TOFMR)
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Anomaly detection
"
- Hypothesis testing:
Ho: X ~ P, P, =P(X = 2|V = k)
H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}

Minimax Hypothesis Testing:
argm(sinmax{]P)(cS(X) =0|Y =1),P(6(X) =1|Y =0)}

(Do /D

{
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Anomaly detection
" I

Hypothesis testing:
HO: X ~ P, P, =P(X =x|Y = k)
H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}
Neyman-Pearson Hypothesis Testing:

argm?XIP(é(X) = 1|Y = 1), subject to P(6(X) =1]Y =0) < «

o )
\Aﬁocjx)
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Neyman-Pearson Testing

"
Hypothesis testing:
HO: X ~ P, P, =P(X =xz|Y =k)
H1: X ~ P

Neyman-Pearson Hypothesis Testing:

argm?XIP’(é(X) =1|Y = 1), subject to P(6(X) =1]Y =0) < «

Theorem: The optimal test 6* has the form 1 if 1;1(90) >
ol\T
d fies P(0* (X 1Y =0 OO =h= {’Y iy le(léi§ _ 77:(
t,. & — — — .0 Pi(x
and satisfies P(0*(X) | ) =« 0 it 2o <
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Neyman-Pearson Testing
" I

Hypothesis testing:
HO: X ~ P, P, =P(X =xz|Y =k)

H1: X ~ P
Neyman-Pearson Hypothesis Testing:

argm?XIP’((S(X) =1|Y = 1), subject to P(6(X) =1]Y =0) < «

Example: fo (%B F’ (l)

/[\ AN\
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ROC Curve

Hypothesis testing:
H1: X ~ P

Prob of Detection

P(5(X) = 1]V = 1)

A Prob of False Alarm
P(O(X) =1Y =0)
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Anomaly detection
" I

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies

of purchased item, etc. }
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:
HO: X ~ P, P, =P(X =xz|Y = k)

H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}

Natural to have model for P, (regular purchases).
But what if we have no model for P; since people are strategic?
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p-value
"

. Hypothesis testing:
HO: X ~ P, P, =P(X =z|Y =k)

H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}

Definition p-value: probability of finding the observed, or more extreme, re-

_sults-whrenr thie iall hypothesis HO is true (e.g., X ~ /)

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ~ P)

WARNING: A small p-value is NOT evidence that H1 is true.

/}g' /P(xng/zﬁ‘[y]:ﬂ

0 R
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p-value
" S

. Hypothesis testing:
HO: X ~ P, P, =P(X =x|Y =k)

H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ~ Fp)

Py(x) = N(x; o, o)  Observe: /z; € R
fo(x)

P()(X > CC,L)

o0 1 —(x—po)? /207
= € dx
T=T; /2702

S F ()
Z~F
P(2<¢)=Fle), Flz)e)
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p-value: used the right way
" I

Hypothesis testing:
HO: X ~ P, P, =P(X =x|Y =k)

H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ~ P)

AT G2
Set: o = .05 /&/ﬁ\lﬁ(xiqiy -X
Observe: r; e R <

— NI
p-Va].ue @O(X Z QZ’Z> F{, I-f u,n;‘F'V“”‘,b d_“rg on C@,‘z \L:\JN' Hb>
Test: If p; ngmhen reject the null hypothesis HO
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p-value: used the wrong way
" I

Hypothesis testing:
HO: X ~ P, P, =P(X =x|Y =k)

H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0,1}

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ~ P)

Set: a = .05

Observe: z; € R

p-value: p;, = Py(X > ;)

Test: If p; < a then reject the null hypothesis HO

BAD If p;, > a repeat the experiment with new x; until p; < «
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p-value: used the wrong way
" I

Each day i=1,2,... you measure an iid z; ~ N (u, 1)

RO =0

Under HO the statistic Z \[ Z] Lz ~N(0,1)

P -
14 J o0
ST p; = 1 6—22/2dz
. \ 1 T
T~ . JTW z=2z;
0L 205 fremmre e
0 >
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Case study in adaptive sampling tradeoffs

“Drosophila RNAI screen identifies host genes important for influenza virus
replication,” Nature 2008.

Inhibit a single gene infect with fluorescing virus
Wild type strain

—
with 13,071 genes v S
Sy Microwell

array

Each gene i=1,2,...,n you measure an x; ~ N (u;, 1)
Ho@i): i = 0
Consider procedure for individual hypothesis testing:
~ Set: a=.05
- Observe: z; € R
p-value: p; = Py(X > ;)
Test: If p; < a then reject the null hypothesis HO
Under HO, how many genes do we expect to reject the null hypothesis?

18



Multiple Testing
“ JEEE—
If we make n rejections individually at level «

Iy = {i: HO(%) is true}

L:*F‘JU‘(
gt CED pi<all=) Ppi<a)
eals & oot il il

That's a lot of false alarms!

©Kevin Jamieson 2018
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Multiple Testing - FWER
"
Family-wise error rate FWER= P(reject any true null)
Iy = {i: HO(%) is true}

Bonferroni rule: Reject z@ K= fé L P, é_?;

FWER =P (LJ{pz < a/n}) < Z HD( P. ¢ 04/n>

eI,



Multiple Testing - FDR

False discovery rate FDR=E {'IOﬂRq
Iy = {i: HO(%) is true}

~—

Benjamini-Hochberg procedure:

imax = Max{i : pg;) < %oz}

R=1{i:i<imax}

-
Theorem: BH(«) satisfies FDR< «

©Kevin Jamieson 2018
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MLE Recap - coin flips

" J
= Data: sequence D= (HHTHT...), k heads out of n flips
= Hypothesis: P(Heads) = 6, P(Tails) = 1-6

P(D|#) = 0%(1 — )"~

= Maximum likelihood estimation (MLE): Choose 6 that
maximizes the probability of observed data:

arg max P(D|6) .
0 Ovre =

= arg max log P(D|0) \n

23

OrvLE k
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What about prior

" A
= Billionaire: Wait, | know that the coin is “close” to
50-50. What can you do for me now?

= You say: | can learn it the Bayesian way...



Bayesian Learning
" S
= Use Bayes rule:
P(D | 60)P(6)
P(D)

P(O|D) =
= Or equivalently:

PO |D) « P(D|0O)P(H)
1Y

—_— N ——

/ Fror belef abotf

[(heelilond Wowr Coict fan  fuchiry
e Jdort



Bayesian Learning for Coins
" S
PO | D) «x P(D]|6)P(H)

= Likelihood function is simply Binomial:
P(D|60) =60%(1—0)%T

= What about prior?
Represent expert knowledge
= Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution



Beta prior distribution — P(0)
"

(oy =0 =0 GisBr) v

P = ~ Beta Hs PT Mode:
B (6H ) BT) 7
Beta(1,1) »  Beta(22) Bewd) | _ Beta(2030)
rameter value ’ ’ parémeterv%'lue ’ "~ parameter value ’ ’ parémeterv%'lue

= Likelihood function:  p(p | g) = gor(1 — g)or
= Posterior: P(Q | D) o P(D | Q)P(Q)
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Posterior distribution
" S

= Prior: Beta(By, 87)

= Data: oy heads and o tails

= Posterior distribution:

P(0 | D) ~ Beta(By + apg, Br + ar)

Beta(1,

0]

Beta(2,2

)

Beta(2,

3)

Beta(20,30

)




Beta(30,20)

Using Bayesian posterior .
" I 3

= Posterior distribution: L O T

P(0 | D) ~ Beta(Bg + apr, BT + o)

= Bayesian inference:
Estimate mean

Bl = /0 ' 0P(01D) 0

Estimate arbitrary function f
1
BIf(0)) = | £(6)P(6| D)do
For arbitrary f integral is often hard to compute
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approximation

MAP: Maximum a posteriori ; 7™
» B /\

P(0 | D) ~ Beta(Bg + ag,Br+ar) " % Swd ™

1
BIf(0)) = [ F(0)P(6| D)do

= As more data is observed, Beta is more certain

= MAP: use most likely parameter:

f = arg max P | D) E[f(0)] ~ £(0)



Beta(30,20)

MAP for Beta distribution
"

rameter value

9Bntog—1c1 _ g)\Ortar—1
( ) ~ Beta(Bg+am, Br+ar)

0 —
P@|D) B(8g + o, Br + ar)

= MAP: use most likely parameter:

0 = arg max P(0 | D) =



Beta(30,20)

MAP for Beta distribution
"

rameter value

9Bntog—1c1 _ g)\Ortar—1
( ) ~ Beta(Bg+am, Br+ar)

0 —
POID) B(8g + o, Br + ar)

= MAP: use most likely parameter:

B +ag —1
B+ Br +ag +ar — 2

0 = arg m@axP(O | D) =

= Beta prior equivalent to extra coin flips
= As N — 1, prior is “forgotten”
= But, for small sample size, prior is important!



Bayesian vs Frequentist
" I
» Data: D Estimator: § = t(D) loss: £(t(D),0)

= Frequentists treat unknown 6 as fixed and the
data D as random.

= Bayesian treat the data D as fixed and the
unknown 6 as random



Recap for Bayesian learning
" I

Bayesians are optimists:
* “If we model it correctly, we output most likely answer”
« Assumes one can accurately model:
* Observations and link to unknown parameter 6. p(ZE|9)

 Distribution, structure of unknown 6: p(@)

Frequentist are pessimists:

« “All models are wrong, prove to me your estimate is good”

* Makes very few assumptions, e.g. E[XQ] < oo and constructs an
estimator (e.g., median of means of disjoint subsets of data)

* Must analyze each estimate
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