
Homework #4

CSE 546: Machine Learning

Prof. Kevin Jamieson

Due: 12/4 11:59 PM

Expectation Maximization

1. [3 points] Pandora is a streaming music company like Spotify that was known to buck the collaborative filtering
trend1 and instead paid an army of employees to create feature vectors for each song by hand. Suppose you work
at a Pandora clone and have feature vectors x1, . . . , xn ∈ Rd for all n songs in your database, and a particular
user, for some subset S ⊂ {1, . . . , n}, has listened to song i ∈ S exactly Yi ∈ {1, 2, . . . } times. You would like to

make a playlist for this user so you assume Yi is Poisson distributed with mean E[Yi|xi] =: λi = ew
T xi for some

weight vector w ∈ Rd reflecting the user’s preferences. That is,

p(Yi = y|xi, w) =
λyi
y!
e−λi =

eyx
T
i w

y!
e−e

wT xi
.

The maximum likelihood estimator is ŵ = arg maxw
∏
i∈S p(yi|xi, w). The idea is that you would then construct

a playlist out of the items i ∈ {1, . . . , n} that maximize xTi ŵ.

a. The estimate ŵ has no closed-form solution. Can the optimization problem be transformed into a convex
optimization problem? If so, suggest a method of solving for ŵ given {(xi, yi)}i∈S . (Hint: how do you
show a function f(x) is convex?).

b. You solve for the ŵ for this user and make a playlist for her. Weeks later you look at her listening history
and observe that sometimes she listens to a particular set of songs and skips over others, and at some
other point she listens to a different set of songs and skips over others. You have the epiphany that users
are human beings whose preferences differ with their mood (e.g., music for workouts, studying, being sad,
etc.). You decide she has k music moods and aim to make k playlists, one for each mood that could be
modeled by a different weight vector w. The problem is that you don’t know which observation i ∈ S is
assigned to which mood. Describe (in math and words) how you would use the EM algorithm to make
these k playlists.

Regression with Side Information

2. [8 points] In linear regression we have seen how penalizing the `2-norm of the weights (Ridge) and `1-norm
of the weights (Lasso) affect the resulting solutions. Using different loss functions and regularizers to obtain
different desired behaviors is very popular in machine learning. In this problem we will explore some of these
ideas by using a general convex optimization solver CVXPY: http://www.cvxpy.org/ to solve the optimization
problems we define. Using these kinds of general solvers can be slower than a highly tuned custom solver you
write yourself (e.g., accelerated gradient descent with a tuned stepsize) but they make it easy to swap out loss
functions or regularizers. One of the benefits of convex optimization is that no matter which solver or method is
used (coordinate descent, SGD, gradient descent, Newton’s, etc.) they all converge to the same function value
(unlike non-convex optimization in neural networks where the optimization method itself affects the resulting
solution).

1Methods like matrix completion can leverage massive user-bases rating lots of items, but suffer from the “cold-start” problem:
you recommend songs based on people’s rating history, but to learn who would like a new song you need lots of people to listen to
that song, but that requires you to suggest it and possibly degrade recommendation performance.

1

First let’s generate some data. Let n = 50 and f(x) = 10
∑4
k=1 1{x ≥

k
5}, noting that f(x) is non-decreasing in

x (i.e., f(x) ≥ f(z) whenever x ≥ z). For i = 1, . . . , n let each xi = i−1
n−1 and yi = 1{i 6= 25}(f(xi) + εi) where

εi ∼ N (0, 1). The case where i = 25 represents an outlier in the data.

In the last homework we solved a problem of the form arg minα
∑n
i=1 `(yi −

∑n
j=1 k(xi, xj)αj) where `(z) =

`ls(z) := z2 was the least squares loss. Least squares is the MLE for Gaussian noise, but is very sensitive to
outliers. A more robust loss is the Huber loss:

`huber(z) =

{
z2 if |z| ≤ 1

2|z| − 1 otherwise

which acts like least squares close to 0 but like the absolute value far from 0. Moreover, define a matrix
D ∈ {−1, 0, 1}(n−1)×n

Di,j =

−1 if i = j

1 if i = j − 1

0 otherwise

so that for any vector z ∈ Rn we have Dz = (z2 − z1, z3 − z2, . . . zn − zn−1) In what follows let k(x, z) =
exp(−γ‖x− z‖2) where γ > 0 is a hyperparameter.

a. As a baseline, let

α̂ = arg min
α

n∑
i=1

`ls(yi −
n∑
j=1

Ki,jαj) + λαTKα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

where Ki,j = k(xi, xj) is a kernel evaluation and λ is the regularization constant. Plot the original data

{(xi, yi)}ni=1, the true f(x), the f̂(x) found through leave-one-out CV. (Hint: start with the problem on
the homepage of http://www.cvxpy.org/ and modify it as needed.)

b. Now let

α̂ = arg min
α

n∑
i=1

`huber(yi −
n∑
j=1

Ki,jαj) + λαTKα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

where Ki,j = k(xi, xj) is a kernel evaluation and λ is the regularization constant. Plot the original data

{(xi, yi)}ni=1, the true f(x), the f̂(x) found through leave-one-out CV. (Hint: huber is a function in cvxpy.)

c. The total variation (TV) of a real-valued function g over {1, . . . , n} is defined as
∫ n−1
i=1
|gi− gi−1| = ||Dg||1

and is a common regularizer for de-noising a function (its two-dimensional counterpart is very popular for
image de-noising or filling-in missing/damaged parts of photos). Let

α̂ = arg min
α
||Kα− y||2 + λ1||DKα||1 + λ2α

TKα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

where Ki,j = k(xi, xj) is a kernel evaluation and λ1, λ2 are regularization constants. For intuition, the

penalizer ||DKα||1 prefers functions f̂ with sparse jumps in function value while αTKα perfers functions

that are smoothly varying. On your own (not necessary to report plots), plot f̂ for a variety values of
γ, λ1, λ2 to see how they affect the solution. Use leave-one-out cross validation to find a good setting of
γ, λ1, λ2. Plot the original data {(xi, yi)}ni=1, the true f(x), the f̂(x) found through leave-one-out CV.

d. We say a function g over {1, . . . , n} is non-decreasing if gi − gi−1 ≥ 0 for all i, or Dg ≥ 0 where the
inequality applies elementwise. Perhaps due to domain knowledge, we know that the original unnoisy
function we are trying to estimate is non-decreasing. Let

α̂ = arg min
α
||Kα− y||2 + λαTKα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

subject to DKα ≥ 0

2

where Ki,j = k(xi, xj) is a kernel evaluation and λ is a regularization constant. The above is known as a
quadratic program because it can be written as arg minx

1
2x

TQx + pTx + c subject to Ax ≤ b. On your

own (not necessary to report plots), plot f̂ for a variety values of γ, λ to see how they affect the solution.
Use leave-one-out cross validation to find a good setting of γ, λ. Plot the original data {(xi, yi)}ni=1, the

true f(x), the f̂(x) found through leave-one-out CV. Note that the defined constraint only forces f̂ to be
monotonic on the training data, not over all x ∈ [0, 1], but it is instructive to think about how one might
achieve this.

Deep learning architectures

3. [14 points] In this problem we will explore different deep learning architectures for a classification task. Go
to http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html and complete the follow-
ing tutorials

• What is PyTorch?

• Autograd: automatic differentiation

• Neural Networks

• Training a classifier

The final tutorial will leave you with a network for classifying the CIFAR-10 dataset, which is where this problem
starts. Just following these tutorials could take a number of hours but they are excellent, so start early. After
completing them, you should be familiar with tensors, two-dimensional convolutions (nn.Conv2d) and fully
connected layers (nn.Linear), ReLu non-linearities (F.relu), pooling (nn.MaxPool2d), and tensor reshaping
(view); if there is any doubt of their inputs/outputs or whether the layers include an offset or not, consult the
API http://pytorch.org/docs/master/.

A few preliminaries:

• Using a GPU may considerably speed up computations but it is not necessary for these small networks
(one can get away with using their laptop).

• Conceptually, each network maps an image xin ∈ R32×32×3 (3 channels for RGB) to an output layer
xout ∈ R10 where the image’s class label is predicted as arg maxi=0,1,...,9 x

out
i . An error occurs if the

predicted label differs from its true label.

• In this problem, the network is trained via cross-entropy loss, the same loss we used for multi-class logistic
regression. Specifically, for an input image and label pair (xinput, c) where c ∈ {0, 1, . . . , 9}, if the network’s

output layer is xout ∈ R10, the loss is − log(
exp(xout

c)∑9
c′=0

xout
c′

).

• For computational efficiency reasons, this particular network considers mini-batches of images per training
step meaning the network actually maps B = 4 images per feed-forward so that x̃in ∈ RB×32×32×3 and
x̃out ∈ RB×10. This is ignored in the network descriptions below but it is something to be aware of.

• The cross-entropy loss for a neural network is, in general, non-convex. This means that the optimization
method may converge to different local minima based on different hyperparameters of the optimization
procedure (e.g., stepsize). Usually one can find a good setting for these hyperparameters by just observing
the relative progress of training over the first epoch or two (how fast is it decreasing) but you are warned
that early progress is not necessarily indicative of the final convergence value (you may converge quickly
to a poor local minima whereas a different step size could have poor early performance but converge to a
better final value).

• The training method used in this example uses a form of stochastic gradient descent (SGD) that uses
a technique called momentum which incorporates scaled versions of previous gradients into the current
descent direction2. Practically speaking, momentum is another optimization hyperparameter in addition
to the step size.

2See http://www.cs.toronto.edu/~hinton/absps/momentum.pdf for the deep learning perspective on this method.

3

• We will not be using a validation set for this exercise. Hyperparameters like network architecture and
step size should be chosen based on the performance on the test set. This is very bad practice for all the
reasons we have discussed over the quarter, but we aim to make this exercise as simple as possible.

• You should modify the training code such that at the end of each epoch (one pass over the training data)
compute and print the training and test classification accuracy (you may find the running calculation that
the code initially uses useful to calculate the training accuracy).

• While one would usually train a network for hundreds of epochs for it to converge, this can be prohibitively
time consuming so feel free to train your networks for just a dozen or so epochs.

You will construct a number of different network architectures and compare their performance. For all, it is
highly recommended that you copy and modify the existing (working) network you are left with at the end
of the tutorial Training a classifier. For all of the following perform a hyperparameter selection (manually by
hand, random search, etc.) using the test set, report the hyperparameters you found, and plot the training and
test classification accuracy as a function of iteration (one plot per network). You will receive less credit
for very sub-optimal hyperparameter choices that lead to drastically lower error rates than your
peers.

a. Fully connected output, 0 hidden layers (logistic regression): we begin with the simplest network pos-
sible that has no hidden layers and simply linearly maps the input layer to the output layer. That is,
conceptually it could be written as

xout = Wvec(xin) + b

where xout ∈ R10, xin ∈ R32×32×3, W ∈ R10×3072, b ∈ R10 where 3072 = 32 · 32 · 3. For a tensor
x ∈ Ra×b×c, we let vec(x) ∈ Rabc be the reshaped form of the tensor into a vector (in an arbitrary but
consistent pattern).

b. Fully connected output, 1 fully connected hidden layer: we will have one hidden layer denoted as xhidden ∈
RM where M will be a hyperparameter you choose (M could be in the hundreds). The nonlinearity applied
to the hidden layer will be the relu (relu(x) = max{0, x}, elementwise). Conceptually, one could write
this network as

xout = W2relu(W1vec(xin) + b1) + b2

where W1 ∈ RM×3072, b1 ∈ RM , W2 ∈ R10×M , b2 ∈ R10.

c. Fully connected output, 1 convolutional layer with max-pool: for a convolutional layer W1 with individual
filters of size p × p × 3 and output size M (reasonable choices are M = 100, p = 5) we have that
Conv2d(xinput,W1) ∈ R(33−p)×(33−p)×M . Each convolution will have its own offset applied to each of the
output pixels of the convolution; we denote this as Conv2d(xinput,W)+b1 where b1 is parameterized in RM .
We will then apply a relu (relu doesn’t change the tensor shape) and pool. If we use a max-pool of size N (a
reasonable choice is N = 14 to pool to 2×2 with p = 5) we have that MaxPool(relu(Conv2d(xinput,W1)+

b1)) ∈ Rb
33−p
N c×b 33−p

N c×M . We will then apply a fully connected layer to the output to get a final network
given as

xoutput = W2vec(MaxPool(relu(Conv2d(xinput,W1) + b1))) + b2

where W2 ∈ R10×M(b 33−p
N c)2 , b2 ∈ R10. The parameters M,p,N (in addition to the step size and momen-

tum) are all hyperparameters.

d. (Extra credit: [3 points]) Returning to the original network you were left with at the end of the tutorial
Training a classifier, tune the different hyperparameters (number of convolutional filters, filter sizes,
dimensionality of the fully connected layers, stepsize, etc.) and train for many epochs to achieve a test
accuracy of at least 87%.

The number of hyperparameters to tune in the last exercise combined with the slow training times hopefully
gave you a taste of how difficult it is to construct good performing networks. It should be emphasized the
networks we constructed are tiny; typical networks have dozens of layers, each with hyperparameters to tune.
Additional hyperparameters you are welcome to play with if you are so interested: replacing relu max{0, x} with
a sigmoid 1/(1 + e−x), max-pool with average-pool, and experimenting with batch-normalization or dropout.

4

