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Some data, Bayes Classifier
" JEEE—
/’ Training data:

True label: +1

O True label: -1

/ '\Optlmal ‘Bayes” classifier:

1

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al
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Linear Decision Boundary
"
Training data:

True label: +1

O True label: -1

g

Learned:
Linear Decision boundary
tTw+b=0

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al
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15 Nearest Neighbor Boundary
" JE—
Training data:

True label: +1

s O True label: -1

Learned:

15 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1
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1 Nearest Neighbor Boundary

Training data:

True label: +1

O True label: -1

'\Learned:

1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1
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k-Nearest Neighbor Error
" JEEE—

k = Number of Nearest Neighbors

151 101 69 45 31 21 11 7 5 3 1 . .
1 11 1 111 11 1 1 1 BlaS-Val’IanCe tradeOff
§ Linear
As k->infinity?
-
8 - : Bias:
5 Best possible i
T Variance:
b4 o
2
2 As k->17?
o
Bias:
e | .
s Train ‘
Test )
—— Bayes . Variance:
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Notable distance metrics
(and their level sets)

L, norm

1 L, norm (taxi-cab)
1
]
1
|

Mahalanobis (here,

2 on the previous slide is not

necessarily diagonal, but is

symmetric L1 (max) norm
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1 nearest neighbor
"

One can draw the nearest-neighbor regions in input space.

Dist(x', X)) = (x'; = X, )* + (X', = ¥5)?  Dist(x!,x)) =(x', — xI,)2+(3x', — 3x,)?

The relative scalings in the distance metric affect region shapes
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1 nearest neighbor guarantee

" S
{(zi,yi)Hiz1 ;€ Rd,yz‘ e{l,..., k}
As n — oo, assume the x;’s become dense in R?

Note: any z, € R? has the same label distribution as ; with b = 1N N(a)

[Cover, Hart, 1967]
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1 nearest neighbor guarantee

" S
{(zi,yi)Hiz1 ;€ Rd,yz‘ e{l,..., k}
As n — oo, assume the x;’s become dense in R?

Note: any z, € R? has the same label distribution as ; with b = 1N N(a)

.....

Bates error = 1 — py+
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1 nearest neighbor guarantee

" J———
{(zi,yi)Hiz1 ;€ Rdayi e{l,..., k}
As n — oo, assume the x;’s become dense in R?

Note: any z, € R? has the same label distribution as ; with b = 1N N(a)
If po=P(Y,=4¢) =P(Y, =/) and {* = arg ,max pe then

.....

Bates error = 1 — py+

1-nearest neighbor error = P(Y, #Y;) = ZIP’(Ya =0,Y, £ /)
(=1
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1 nearest neighbor guarantee

" J———
{(zi,yi)Hiz1 ;€ Rdayi e{l,..., k}
As n — oo, assume the x;’s become dense in R?

Note: any z, € R? has the same label distribution as ; with b = 1N N(a)
Ifpo=P(Y,=4¢)=P(Y, =/) and {* = arg max py then

.....

Bates error = 1 — py+
1-nearest neighbor error = ]P’(Y +Y,) = ZIP’(Ya =0,Y, £ /)

(=1

k
—ZW 1 —pg) < 1—P£*)—m(1—pe )2

As x->infinity, then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]

©2017 Kevin Jamieson 13



Curse of dimensionality Ex. 1
" EEE———

C
-

Unit Cube — p=10
o y - p=2
I w0 ‘,"
8 o |’ ~ p=1
e y
s
2 /.
o 31|/,
// /
[ /
o~ f //
=) /
1 .
- o
! S 1
Neighborhood — 02 0.4 0.6
side Iength r Fraction of Volume

X is uniformly distributed over [0, 1]?. What is P(X € [0, r]P)?
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Curse of dimensionality Ex. 2
" S

{X;}?_; are uniformly distributed over [—.5, .5]P.

N=1,000
N=100 _/N=10,000

.
Median Radius

00 01 02 03 04 05 08

0 5 10 15

Dimension

What is the median distance from a point at origin to its 1NN?
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Nearest neighbor regression

05

0.0 02 04 I os 08 1.0

Ni(2¢) = k-nearest neighbors of x

~ 1
fzo) = Z L Y
x; ENg (o)

Kevin Jamieson 2017
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Nearest neighbor regression

15

Why are far-away neighbors
weighted same as close neighbors!

1.0

05

Kernel smoothing: K(x,y)

00

Cpanachniov
- g "-m”.
: § o
3 2 1 0 2 3
0.0 02 04 I o8 08 1.0
Ni(2¢) = k-nearest neighbors of x
n
n — Zizl K(CC(),ZCZ)yZ

f(zo) =

Z?:l K(Qfo, xz)

Kevin Jamieson 2017 17



Nearest neighbor regression

05

00 02 04 (o os 08 1.0 00 02 04 () o6 08 1.0

Ni(2¢) = k-nearest neighbors of x

£ 1 ry > iy K(wo, 7:)y;
f(zo) = — Yi flzg) = =1 ’
%E%k:(xo) g ( ) Zizl K(Im 332)
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Nearest neighbor regression

00 02 04 (o os 08 1.0 00 02 04 () o6 08 1.0

Ni(2¢) = k-nearest neighbors of x Why just average them?

f(-CIZO) = Z 1 Yi f({]jo) _ ZiZl K (zo,

2 €N (20) g 2?21 K (o,
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Nearest neighbor regression

(@D,
a ' N ’ 2 ‘(:1:2 o ‘ 9/.v
8 / \\\ ol / :

04 I 06 08 10 0'0 oAz o‘n 1';0 ols
Ni(zo) = k-nearest neighbors of x
_ | ~ o > K(wo, i)y N B T
f(xO) — xie%};(xo) E Yi f(xo) - 2?21 K(LUO,CUZ') f([l?o) — b(w()) _|_ ’LU(Q?()) .CCO
n
w(xp), b(xrg) = arg min Z K(zg,z5)(y; — (b+whx;))?
w,b pay

Local Linear Regression
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Nearest Neighbor Overview
" JE——

= Very simple to explain and implement

= No training! But finding nearest neighbors in large dataset
at test can be computationally demanding (kD-trees help)
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Nearest Neighbor Overview
" JE

Very simple to explain and implement

No training! But finding nearest neighbors in large dataset
at test can be computationally demanding (kD-trees help)

You can use other forms of distance (not just Euclidean)

Smoothing with Kernels and local linear regression can
improve performance (at the cost of higher variance)
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Nearest Neighbor Overview
" JEE

Very simple to explain and implement

No training! But finding nearest neighbors in large dataset
at test can be computationally demanding (kD-trees help)

You can use other forms of distance (not just Euclidean)

Smoothing with Kernels and local linear regression can
improve performance (at the cost of higher variance)

With a lot of data, “local methods” have strong, simple
theoretical guarantees. With not a lot of data,
neighborhoods aren’t “local” and methods suffer.
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Kernels

Machine Learning — CSE546
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= Hinge Loss
Binomial Deviance
Squarod Emor
— Class Mubor

Machine Learning Problems
" S

= Have a bunch of iid data of the form:

[~]
-4

00 05 10 15 20 25 30

{(x’wyz) ?:1 €T; € Rd Yi € R

= [earning a model's parameters:
: l;
Each /;(w) is convex. 2 tiw)

Hinge Loss: £;(w) = max{0,1 — y;z} w}

Logistic Loss: £;(w) = log(1 + exp(—y; z} w))

Squared error Loss: £;(w) = (y; — xlw)?

All in terms of inner products! Even nearest neighbor can use inner products!
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What if the data is not linearly separable?
"

Use features of features
. of features of features....

T o(z) : RY — RP
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Dot-product of polynomials

" JE—
d(u) - d(v) = polynomials of degree exactly d

(0]
U2

d=150(u) = (12 (6(.0(0)) = wavr + v
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Dot-product of polynomials

" J——
d(u) - d(v) = polynomials of degree exactly d

] (6(u), 6(0)) = urvr + uzvs

d=2:¢(u) = (p(u), p(v)) = uivT + usvs + 2uiUsv1 Vs
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Dot-product of polynomials

" JE——
d(u) - d(v) = polynomials of degree exactly d

] (6(u), 6(0)) = urvr + uzvs

d=2:¢(u) = (p(u), p(v)) = uivT + usvs + 2uiUsv1 Vs

eeeeeeeeeeeeeeeeee



Observation
- _

ﬁ}:argmmz — ] w)? 4 N|wl|]?

AN

There exists an v € R": w = L T
i=1

©2017 Kevin Jamieson
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Observation
" A

arg min || Ko — y||3 + Mo’ Ka

©2017 Kevin Jamieson
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Common kernels
"
= Polynomials of degree exactly d
K(u,v) = (u-v)?
= Polynomials of degree up to d
K(,v)=(u-v+1)4
= Gaussian (squared exponential) kernel
K(u,v) =exp (— lu - VH%)
202
= Sigmoid
K(u,v) = tanh(nu-v 4+ v)

©2017 Kevin Jamieson
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Mercer’'s Theorem
" A

= When do we have a valid Kernel K(x,x')?
= Definition 1: when it is an inner product

= Mercer’s Theorem:
K(x,X’) is a valid kernel if and only if K is a positive
semi-definite.
PSD in the following sense:

©2017 Kevin Jamieson
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RBF Kernel K(u,v) =exp <_ Hu2—02v||2>
" A

= Note that this is like weighting “bumps” on each point like kernel
smoothing but now we learn the weights

Radial Basis Functions f(z) = ap + L, o; K(z,z5)
'
z . _
o
= ~ o /
N - ' y N o /
8 o \ “ o — .
il X e e —
o ” Nt
o .
A ! L1 1 | Qo - A o ek -l |
2 ' 0 1 2 2 v 0 ' 2
T T

= [s there an inner product representation of K(x,y)?

©2017 Kevin Jamieson
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Classification

i = ZmaX{O, 1—y;(b+ 2] w)} + Nw||3
i=1

mmZmaX{O 1 —y; b—l—E:oz‘7 Ti, i)} + A Z Qo (X, x5)

1,7=1

©2017 Kevin Jamieson
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RBF kernel Secretly random

fﬁﬁtl Irgi 2 cos(a) cos(B) = cos(a + B) + cos(a — )
|

b ~ uniform(0, 7) w ~ N(0,27)

o(z) = V2 cos(wl z + b)
Eub[6(2)" d(y)] =

©2017 Kevin Jamieson



RBF kernel Secretly random

fﬁatl Irgﬁ 2 cos(a) cos(B) = cos(a + B) + cos(a — )
|

b ~ uniform(0, 7) w ~ N(0,27)

o(z) = V2 cos(wl z + b)

Euwslo(x) o) = e YIz—vll3 [Rahimi, Recht 2007]

Hint: use Euler’s formula e’* = cos(z) + j sin(z)
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Walit, infinite dimensions?
" S

= [sn’t everything separable there? How are we not
overfitting?

= Regularization! Fat shattering (R/margin)*2

= What about sparsity?

©2017 Kevin Jamieson
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String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

x1

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK
LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) 203 =8,000
hl.(x1) = 1and k) (x2) = 2.

LQE
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Least squares, tradeoffs
" J———
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