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Some data, Bayes Classifier

Training data:

True label: +1

True label: -1

Optimal “Bayes” classifier:

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al

P(Y = 1|X = x) =
1

2
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Linear Decision Boundary

Training data:

True label: +1

True label: -1

Learned:
Linear Decision boundary

Predicted label: +1

Predicted label: -1

x

T
w + b = 0

Figures stolen from Hastie et al
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15 Nearest Neighbor Boundary

Training data:

True label: +1

True label: -1

Learned:
15 nearest neighbor decision  
boundary (majority vote)

Predicted label: +1

Predicted label: -1
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1 Nearest Neighbor Boundary

Training data:

True label: +1

True label: -1

Learned:
1 nearest neighbor decision  
boundary (majority vote)

Predicted label: +1

Predicted label: -1
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k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance: 

Bias:

Variance: 
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Notable distance metrics  
(and their level sets)

L1 norm (taxi-cab)

L1 (max) norm

Mahalanobis          (here, 
Σ on the previous slide is not 
necessarily diagonal, but is 
symmetric

L2 norm 
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1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2
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1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd
, yi 2 {1, . . . , k}

As n ! 1, assume the xi’s become dense in Rd

Note: any xa 2 Rd
has the same label distribution as xb with b = 1NN(a)

[Cover, Hart, 1967]
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1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd
, yi 2 {1, . . . , k}

As n ! 1, assume the xi’s become dense in Rd

Note: any xa 2 Rd
has the same label distribution as xb with b = 1NN(a)

If p` = P(Ya = `) = P(Yb = `) and `⇤ = arg max

`=1,...,k
p` then

Bates error = 1� p`⇤
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1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd
, yi 2 {1, . . . , k}

P(Ya 6= Yb) =
kX

`=1

P(Ya = `, Yb 6= `)
1-nearest neighbor error =

Bates error = 1� p`⇤

As n ! 1, assume the xi’s become dense in Rd

Note: any xa 2 Rd
has the same label distribution as xb with b = 1NN(a)

If p` = P(Ya = `) = P(Yb = `) and `⇤ = arg max

`=1,...,k
p` then
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1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd
, yi 2 {1, . . . , k}

P(Ya 6= Yb) =
kX

`=1

P(Ya = `, Yb 6= `)
1-nearest neighbor error =

Bates error = 1� p`⇤

As n ! 1, assume the xi’s become dense in Rd

Note: any xa 2 Rd
has the same label distribution as xb with b = 1NN(a)

If p` = P(Ya = `) = P(Yb = `) and `⇤ = arg max

`=1,...,k
p` then

=
kX

`=1

p`(1� p`)  2(1� p`⇤)�
k

k � 1
(1� p`⇤)

2

As x->infinity, then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]
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Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?
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Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?
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Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

b
f(x0) =

X

xi2Nk(x0)

1

k

y

i
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Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

b
f(x0) =

X

xi2Nk(x0)

1

k

y

i

Why are far-away neighbors 
weighted same as close neighbors!

Kernel smoothing: K(x, y)

b
f(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)
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Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

b
f(x0) =

X

xi2Nk(x0)

1

k

y

i

b
f(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)
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Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

b
f(x0) =

X

xi2Nk(x0)

1

k

y

i

b
f(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
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Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

b
f(x0) =

X

xi2Nk(x0)

1

k

y

i

b
f(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

b
f(x0) = b(x0) + w(x0)

T
x0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ w

T
xi))

2

Local Linear Regression
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Nearest Neighbor Overview

■ Very simple to explain and implement 
■ No training! But finding nearest neighbors in large dataset 

at test can be computationally demanding (kD-trees help)



©2017 Kevin Jamieson 22

Nearest Neighbor Overview

■ Very simple to explain and implement 
■ No training! But finding nearest neighbors in large dataset 

at test can be computationally demanding (kD-trees help) 
■ You can use other forms of distance (not just Euclidean) 
■ Smoothing with Kernels and local linear regression can 

improve performance (at the cost of higher variance)
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Nearest Neighbor Overview

■ Very simple to explain and implement 
■ No training! But finding nearest neighbors in large dataset 

at test can be computationally demanding (kD-trees help) 
■ You can use other forms of distance (not just Euclidean) 
■ Smoothing with Kernels and local linear regression can 

improve performance (at the cost of higher variance) 
■ With a lot of data, “local methods” have strong, simple 

theoretical guarantees. With not a lot of data, 
neighborhoods aren’t “local” and methods suffer. 
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Kernels

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 
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■ Have a bunch of iid data of the form:

{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi x
T
i w))

Squared error Loss: `i(w) = (yi � x

T
i w)

2

xi 2 Rd
yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)
Each `i(w) is convex.

Hinge Loss: `i(w) = max{0, 1� yix
T
i w}

Machine Learning Problems

All in terms of inner products! Even nearest neighbor can use inner products!
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What if the data is not linearly separable?

Use features of features  
of features of features….

Feature space can get really large really quickly!

�(x) : Rd ! Rp
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Dot-product of polynomials

exactly d

d = 1 : �(u) =


u1

u2

�
h�(u),�(v)i = u1v1 + u2v2
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Dot-product of polynomials

exactly d

d = 1 : �(u) =


u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

d = 2 : �(u) =

2

664

u2
1

u2
2

u1u2

u2u1

3

775 h�(u),�(v)i = u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2
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Dot-product of polynomials

exactly d

d = 1 : �(u) =


u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

d = 2 : �(u) =

2

664

u2
1

u2
2

u1u2

u2u1

3

775 h�(u),�(v)i = u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2

General d :

Dimension of �(u) is roughly pd if u 2 Rp
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Observation

There exists an ↵ 2 Rn
: bw =

nX

i=1

↵ixi Why?

bw = argmin
w

nX

i=1

(yi � x

T
i w)

2 + �||w||2w
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Observation

argmin
↵

||K↵� y||22 + �↵TK↵
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Common kernels

■ Polynomials of degree exactly d 

■ Polynomials of degree up to d 

■ Gaussian (squared exponential) kernel 

■ Sigmoid
K(u,v) = exp

✓
� ||u� v||22

2�2

◆
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Mercer’s Theorem

■ When do we have a valid Kernel K(x,x’)? 
■ Definition 1: when it is an inner product  

■ Mercer’s Theorem: 
K(x,x’) is a valid kernel if and only if K is a positive 
semi-definite. 
PSD in the following sense:
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RBF Kernel

■ Note that this is like weighting “bumps” on each point like kernel 
smoothing but now we learn the weights

K(u,v) = exp

✓
� ||u� v||22

2�2

◆

■ Is there an inner product representation of K(x,y)? 
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Classification

bw =

min

↵,b

nX

i=1

max{0, 1� yi(b+

nX

j=1

↵jhxi, xji)}+ �

nX

i,j=1

↵i↵jhxi, xji

nX

i=1

max{0, 1� yi(b+ x

T
i w)}+ �||w||22
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RBF kernel Secretly random 
features

b ⇠ uniform(0,⇡)

�(x) =

p
2 cos(w

T
x+ b)

2 cos(↵) cos(�) = cos(↵+ �) + cos(↵� �)

Ew,b[�(x)
T
�(y)] =

w ⇠ N (0, 2�)
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RBF kernel Secretly random 
features

b ⇠ uniform(0,⇡)

�(x) =

p
2 cos(w

T
x+ b)

2 cos(↵) cos(�) = cos(↵+ �) + cos(↵� �)

Ew,b[�(x)
T
�(y)] = e��||x�y||22

w ⇠ N (0, 2�)

Hint: use Euler’s formula ejz = cos(z) + j sin(z)

[Rahimi, Recht 2007]
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Wait, infinite dimensions?

■ Isn’t everything separable there? How are we not 
overfitting?  

■ Regularization! Fat shattering (R/margin)^2 

■ What about sparsity?
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String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

x1

x2

All subsequences of length 3 (of possible 20 amino acids)
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Least squares, tradeoffs


