Announcements
"
 Project proposal due next week: Tuesday 10/24

« Still looking for people to work on deep learning
Phytolith project, join #phytolith slack channel
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Machine Learning Problems
"

= Have a bunch of iid data of the form:

= Learning a model’s parameters: Zﬁi(w) F() & & oS

Each /;(w) is convex. £ F € g isa
SVS'ﬁ/\&(/(Zné «t o

Y
7 is a subgradient at x if
v T fy) = f(z)+g" (y—x)
f convex:

fly) > f(@)+ V(@) (y—2) Va,y



Machine Learning Problems
*

= Have a bunch of iid data of the form:

{(mi,:) Fiea z; € R y; € R

= Learning a model’'s parameters:
: l;
Each /;(w) is convex. 2 tiw)

1=1
Logistic Loss: £;(w) = log(1 + exp(—y; 21w
Squared error Loss: £;(w) = (y; — zl w)?

©Kevin Jamieson 2017

)

25



Taylor Series Approximation
"
= Taylor series in one dimension:

f(x +9) Z{L(ar) + f’(zv)éj ﬂ”(x)jé) +

» Gradient descent:

[ )+ (2)8 2 ) () § 45 1'0)8]
£(x-2600) AV ) - tl?'w

\

G+ $)

F(x)4{r1)44
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Taylor Series Appr

$ Convex CF
= Taylor serie: F'

T +

—

» Gradient descent:

£(2 V) F VA Y




General case
" A

o
In general for Newton’s method to achieve f(w;) — f(wy) < e

Léa 0([07(/67(//6 3\ )

So why are ML problems overwhelmingly solved
by gradient methods?

Hint: v; is solution to : V2 f(ws)v; = —V f(wy)
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General Convex case [(w:) — f(w.) <e
" A
Newton’s method:

t ~ log(log(1/e¢))
Gradient descent:
Clean * fis smooth and strongly convex: al =< V2 f (w:) < bl

converge
nce
proofs:
Bubeck

e fis smooth: V°f(w) = bl

- f is potentially non-differentiable: ||V f(w)l||2 < ¢

Nocedal

EV\QLQCT’ Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad, ...
u
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Revisiting...

Logistic Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 16, 2016

©Kevin Jamieson 2017



Loss function: Conditional Likelihood
"
- Have a bunch of iid data of the form: {(z;,¥;)}iey x; € RY, y; € {—1,1}

1
1+ exp(—ywTx)

n
{DMLE :argmt?XHP(yi]:Ei,w) PY =ylr,w) =
1=1

f(w) = argmin } log(1 + exp(—y; = w))
1=1

Vf(w) =



Online Learning

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 18, 2016
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Going to the moon

Moon at armval time
e
=)

~ Moon at Tu
')

Earth's equatonal plane

Guidance computer predicts trajectories
around moon and back with

- Noisy sensors

- Imperfect models

- Little computational power

- Big risk of failure
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Going to the moon

Moon at armval time
e
=)

~ Moon at Tu
)

Earth's equatonal plane

Guidance computer predicts trajectories
around moon and back with

- Noisy sensors

- Imperfect models Apolio 13
- Little computational power
- Big risk of failure Why is Tom Hanks flying erratically?

Because they didn’t have the power to
turn on the Kalman Flliter!
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State Estimation
"

- Predict current state given past state and current control input

Wy, = f(wn-1) + g(un)

- Given current context, Uy, compare your prediction to noisy measurement Yn,

U (W) = (Yn — h(xnoiﬁn))Z

- Update current state to include measurement

Wy, = Wy, — Knvwén(w)}w ~

_w,n

Kalman filter does optimal least squares state estimation if f, g, h are linear!

©Kevin Jamieson 2017 7



Recursive Least Squares (RLS)
" I

Least squares = special case of Kalman Filter: no dynamics, no control

Wy, = f(wn-1) + g(un)



Recursive Least Squares (RLS)
" SN

Least squares = special case of Kalman Filter: no dynamics, no control

= (Y — T, W)’ Ideally: i
— (yn — gjgwn_l)2 —argmmz —x w)
Whn = KVt (w)| _



Recursive Least Squares (RLS)
" S

Sherman—Morrison: (A+'wv ) = A"

A‘l'vaA‘1
1 +oT A1y

n -1 n
_ T
- Exzxz E LiYi “—

Ideally "

= arg mm Z

—ZU

w




Recursive Least Squares (RLS)
" S

Great, what's the time-complexity of this?

It is 2017. Not the 60’s... is limited computation still really a problem?

©Kevin Jamieson 2017
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Digital Signal Processing

The original “Big Data”

Wifi/cell-phones are constantly solving Low power devices, high data rates

least squares to invert out multipath

©Kevin Jamieson 2017 12



Digital Signal Processing

The original “Big Data”

Wifi/cell-phones are constantly solving Low power devices, high data rates

least squares to invert out multipath
YouTube Uploads: > 300 Hours of Video per Minute

You([T)

-

Morete yeeeted
i b :

Gigabytes of data per second
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Incremental Gradient Descent

Note: no matrix multiply
(¢, y¢) arrive: /

Wi41 = W — 1] [Vw(yt — xfw)le:wt}

We know RLS is exact. How much worse is this?

In general convex /;(w) arrives:

() is convex <= L(y) > £(x) + VLi(z)! (y — z) Vz,y

14



Incremental Gradient Descent
" D

w1 — wal|3 = [Jwe — NV (we) — w3



Incremental Gradient Descent
" D



Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:
{(@i,yi) Fiza z; €RT  y €R
= Learning a model’'s parameters: 1
Each /;(w) is convex. - ; l;(w)

©Kevin Jamieson 2017
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Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:

{(w4, i) }ia r, €RY y €R
= Learning a model’'s parameters: 1
Each /;(w) is convex. - 2; l;(w)
1=

Gradient Descent:

1 mn
— — w | — g'z ‘
Wt+1 Wt nV (n ; (w)) B

©Kevin Jamieson 2017
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Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:

{(w4, i) }ia r, €RY y €R
= Learning a model’'s parameters: 1
Each /;(w) is convex. - 2; l;(w)
1=

Gradient Descent: |
Wikl =W~V <n ;“W) e

Stochastic Gradient Descent:
I; drawn uniform at

Wiyl = Wt — nvwgft (w) ‘w:wt random from {1, .« o ,n}

E[VLr, (w)] =

©Kevin Jamieson 2017
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Stochastic Gradient Descent
"

Gradient Descent:

1 n
— — w | — Ez ‘
Wi, = wy — NV (n ;Zl (w)) -

Stochastic Gradient Descent:
I; drawn uniform at

Wiyl = W — nvwgft (w) ‘w:wt random from {]., v o ,n}

©Kevin Jamieson 2017
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Stochastic Gradient Ascent for Logistic

Regression
|

= Logistic loss as a stochastic function:

Ex [6(w,x)] = Ex |In P(y|x, w) — A||w|[3]
= Batch gradient ascent updates:

N
(t4+1) (t) VRO IO _11x0) w®
w, W, +77{ AW; *NZ% Y = PY =1, wt)]

=1

= Stochastic gradient ascent updates:
Online setting:

(t+1) - w(t) +n, {_)\wgt) n xgt) y® — P(Y = 1|X(t)’w(t))]}
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Stochastic Gradient

Descent: A Learning
perspective

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 16, 2016
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Learning Problems as Expectations
"

= Minimizing loss in training data:

Given dataset:
=  Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

Ip(w) = % ZE(W, x7)

= However, we should really minimize expected loss on all data:
((w) = B [t(w,%)] = [ plo)tw,x)dx

= S0, we are approximating the integral by the average on the training data

©Sham Kakade 2016 23



Gradient descent in Terms of Expectations
" J———

= “True” objective function:
((w) = B [t(w,%)] = [ pl)tw,x)dx
= Taking the gradient:

= “True” gradient descent rule:

= How do we estimate expected gradient?



SGD: Stochastic Gradient Descent

" JE———
« “True” gradient: VZ(W) = b [V@(W, X)]

= Sample based approximation:

= What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient descent
= Among many other names

VERY useful in practice!!!

©Sham Kakade 2016

25



