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THUS FAR, REGRESSION:
PREDICT A CONTINUOUS VALUE GIVEN
SOME INPUTS
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Weather prediction revisted

Temperature

GF




Reading Your Brain, Simple Example

: ] Bl ] [Mitchell et al.]
Pairwise classification accuracy: 85%

Person P— Animal




Classification

"
= Learn: X —>Y
X — features
Y — target classes

= Conditional probability: P(Y|X)

= Suppose you know P(Y|X) exactly, how should
you classify?
Bayes optimal classifier:
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Link Functions

" JE
= Estimating P(Y|X): Why not use standard linear
regression?

= Combining regression and probability?
Need a mapping from real values to [0,1]
A link function!
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Logistic
. 1
function

Logistic Regression  (orsigmoia): 1+ (-

1

" B
. Learn P(Y|X) directly -
Assume a particular functional form for link o8
function g os
Sigmoid applied to a linear function of the input ™
features: Z:

1
P(Y =0|X,W) = o
( X, W) 1+ exp(wg + X ; w; X;) <=

o
4,

Features can be discrete or continuous!

©Kevin Jamieson 2017 8



Understanding the sigmoid

g(wo + Z wixT;) =
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=-1
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Very convenient!

‘ 1
"P(Y =0L|X =< Xq,...Xn >) —

1+ exp(wg + >; w; X;)
implies

exp(wo + >; wi X;)
1 + exp(wg + 3 w; X;)

p(y —1 )|X =< X1,...Xn >) =



Very convenient!

1

|
SP(Y =0L|X =< X1,..Xn >) =
" 1+ exp(wo + X w; X;)

Implies

exp(wo + >; w; X;)
1+ exp(wg + >; w; X;)

P(Y =1 )lX =< Xl, ...Xn >) —

Implies
P(Y =1|X)
= exp(wo + ) w;X;)
P =0.1X) ; o linear
classification
Implies 1 rule!
P(Y =1|X)
n — . X
Py =ol|x) W0 %:w" z
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Logistic Regression —
a Linear classifier

14 exp(—=2)

s = ]
gwo + Y wiz;) = 1
- v 1 _|_ewo+Z,,-,w11mz:
P(Y = 0|X)
In = X
POy =1x) 0T 2w
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Loss function: Conditional Likelihood
*
Have a bunch of iid data of the form: {(wz,yz) ?:1 T ERd, y; € {—1,1}

1
1 + exp(w'x)

PlY = —1l|z,w) =
exp(w!x)

P(Y =1|z,w) = T exp (T2}

This is equivalent to:

1

P(Y = =

So we can compute the maximum likelihood estimator:

n
WNLE = arg mng P(y;|z;, w)
i=1
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Loss function: Conditional Likelihood
*
= Have a bunch of iid data of the form: {(:Ez,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—yw'z)

n
'&}MLE :argmgan(yi|xi,w) P(Y = ylz,w) =
=1



Loss function: Conditional Likelihood
"
= Have a bunch of iid data of the form: {(:r:@,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—yw'z)

n
'&}MLE :argmgan(yi|xi,w) P(Y = ylz,w) =
=1

= arg mui)n Z log(1 + exp(—y; ] w))
i=1



Loss function: Conditional Likelihood
"
= Have a bunch of iid data of the form: {(:E@,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—yw

WMLE = argmaXHP(yi|a:i,w) P(Y = ylz,w) = 7
w

1=1

ZL‘

—argmleog 1+ exp(—y; x} w)
1=1

Logistic Loss: £;(w) = log(1 + exp(—y; ] w)
/ ‘4 /IL
Squared erfor Loss: £;(w) = (y; — zlw (MLE for Gaussian noise)

S /og(/f(’ﬁo/ 2)) /

e leno
log(t 4 <l 2)) YLlog (e 29) = 2
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Loss function: Conditional Likelihood
"
Have a bunch of iid data of the form: {(:E@,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—yw'z)

n
'&}MLE :argmgan(yi|xi,w) P(Y = ylz,w) =
=1

— arg minZlog(l + exp(--y; aih_gu)) = J(w)
R ~_

—

What does J(w) look like?@s it convex?
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Loss function: Conditional Likelihood
"
Have a bunch of iid data of the form: {(:r:@,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—ywTz)

mn

WMLE :argmaXHP(yﬂxi,w) P(Y = ylz,w) =
B

= arg mui)nz log(1 + exp(—y; x} w)) = J(w)

=1

Good news: J(w) is convex function of w, no local optima problems
Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize {rewEtine)
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Linear Separability

n
arg muijn Z log(1 + exp(—y; z; w)) When is this loss small?
i=1
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Large parameters — Overfitting

LILTLL

= |f data is linearly separable, weights go to infinity

In general, leads to overfitting:
= Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihoo

" JE—
= Add regularization penalty, e.g., L,: [

= Practical note about wy:

Wy shald wt be requlaized
afg/"“"‘ Z ["y("‘ oxp (- ‘jg(i(ﬂ/ T(/ia\y)
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Machine Learning Problems

" A
2
= Have a bunch of iid data of the form: LS ﬂc(‘“x - (%“Ifw)
{(mi,:) Fiea z; € R y; € R

= Learning a model’'s parameters:
: l;
Each /;(w) is convex. 2 tiw)



Machine Learning Problems
"

= Have a bunch of iid data of the form:

= Learning a model’s parameters: Zﬁi(w) F() & & oS

Each /;(w) is convex. £ F € g isa
SVS'ﬁ/\&(/(Zné «t o

Y
7 is a subgradient at x if
v T fy) = f(z)+g" (y—x)
f convex:

fly) > f(@)+ V(@) (y—2) Va,y



Machine Learning Problems
*

= Have a bunch of iid data of the form:

{(mi,:) Fiea z; € R y; € R

= Learning a model’'s parameters:
: l;
Each /;(w) is convex. 2 tiw)

1=1
Logistic Loss: £;(w) = log(1 + exp(—y; 21w
Squared error Loss: £;(w) = (y; — zl w)?
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Least squares
" J—

= Have a bunch of iid data of the form:
{(mi,:) Fiea z; € R y; € R

Learning a model’s parameters: Z £ (w)

Each /;(w) is convex.
Squared error Loss: £;(w) = (y; — 2l w)?

How does software solve: % | Xw —y] |3

©Kevin Jamieson 2017 26



Least squares
" J———

= Have a bunch of iid data of the form:
{(zi,vi)}iey  x; € RY e R

Learning a model’s parameters:
Each /;(w) is convex.

Squared error Loss: ¢;(w)

How does software solve: % | Xw —y] |3

Do you need high precision?

... Its Comp“cated: Is X column/row sparse?
(LAPACK, BLAS, MKL...) Is Wg sparse?

Is XTX “well-conditioned”?
Can XTX fit in cache/memory?
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Taylor Series Approximation
"
= Taylor series in one dimension:

f(x +9) Z{L(ar) + f’(zv)éj ﬂ”(x)jé) +

» Gradient descent:

[ )+ (2)8 2 ) () § 45 1'0)8]
£(x-2600) AV ) - tl?'w

\

G+ $)

F(x)4{r1)44
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(%0

Taylor Series Appr

$ Convex CF
= Taylor serie: F'

T +

—

» Gradient descent:

£(2 V) F VA Y




Gradient Descent  f(w) = 2||Xw — y]|5
" JE
Wi1 = Wy — va(’wt)
Viw) = XT(Xw - y) M
LJH' -~ W - Zé(rch—‘xg>
[wéu B W-x): ("‘/é ""/ﬁ> -7 (er"/t— - X;:JB
= (wp-whe) = T XK = YTXW;:>
2 (W ~Wy) - 2( x7x) (Wéﬂu*‘)
2 (L= (D)) e ~tn)
= (T- 2/ x)) (o)

Wy = " 5= (0 Xy



Gradient Descent  f(w)

wir1 = wy — NV f(wy)
(wegr — wi) = (I — nX"X) (wr — wy)
— (I - UXTX)tH(’wo — Wy

10—3]
1 wi

-3
Example: X = [10 O]

0 1

. . N W
}”C&J\J{%im,d \,,/Lo,n M,(A) >p >m;, “> (orddfion number = et

©Kevin Jamieson 2017



Taylor Series Approximation
"

o
= Taylor series in one dimension:

f(z+6) = f(x)+ f(2)d + 51" (2)5%
= Newton’s method: df(”l-‘ﬂ F(* flexy £+ f_’i(_),)s

B (i) ¢ 4708 = O
Pk & (W(DU)J =°§/




Taylor Series Approximation

" S
= Taylor series in d dimensions:
flx+v) = fx)+ Vf(z) v+ 30"V

= Newton’s method:




Newton’s Method  f(w) = 2||Xw — y]|5
- _
Viw)= X" ¥c- ‘13
V2f( )= X'y
v, is solution to : V2 f(wy)v, = —V f(wy)

W41 = W¢ + NV

LS. 4
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Newton’s Method  f(w) = 2||Xw — y]|5
" A

|
Viw) = X (Xw —y) = -
2 _ XX
Vif(w) = XT'X =
S — 4

v, is solution to : V* f(wy)v, = —V f(wy)
~
Wi41 = Wt + N Vé < ()(7)(3 Yry
— |
—
For quadratics, Newton’s method converges in one step! (Not a surprise, why?)

Wy =,wo — n(XTX)_lXT(XwO — yl/: Wy
XYY Yy —




General case
" A

o
In general for Newton’s method to achieve f(w;) — f(wy) < e

Léa 0([07(/67(//6 3\ )

So why are ML problems overwhelmingly solved
by gradient methods?

Hint: v; is solution to : V2 f(ws)v; = —V f(wy)
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General Convex case [(w:) — f(w.) <e
" A
Newton’s method:

t ~ log(log(1/e¢))
Gradient descent:
Clean * fis smooth and strongly convex: al =< V2 f (w:) < bl

converge
nce
proofs:
Bubeck

e fis smooth: V°f(w) = bl

- f is potentially non-differentiable: ||V f(w)l||2 < ¢

Nocedal

EV\QLQCT’ Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad, ...
u
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Revisiting...

Logistic Regression
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Loss function: Conditional Likelihood
"

= Have a bunch of iid data of the form: {(:L‘Z, yi)}?zl Ti € Rd, y; € {—1,1}

mn
. - - 1
WMLE — arg m,fUlX H P(yi|zi, w) P = ylz,w) = 1+ exp(—ywTz)
1=1
f(w) = arg mui)n Z log(1 + exp(—y; ] w))
1=1

VH(w) =
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Stochastic Gradient

Descent: A Learning
perspective

Machine Learning — CSE546
Kevin Jamieson
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Learning Problems as Expectations
" S

= Minimizing loss in training data:

Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

Lo (w) = %ZE(W,Xj)

= However, we should really minimize expected loss on all data:
((w) = B [t(w,)] = [ plo)tlw,x)ix

= S0, we are approximating the integral by the average on the training data
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Gradient ascent in Terms of Expectations
" JEE

= “True” objective function:
((w) = Ex b, )] = [ plx)tlw, x)ax
= Taking the gradient:

= “True” gradient ascent rule:

= How do we estimate expected gradient?



SGD: Stochastic Gradient Ascent (or Descent)

" JEE—
= “True” gradient: VK(W) — Ex [VK(W, X)]

= Sample based approximation:

= What if we estimate gradient with just one sample?7??
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names

VERY useful in practice!!!
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Stochastic Gradient Ascent for Logistic

Reﬁression
|

= Logistic loss as a stochastic function:

Ex [6(w,x)] = Ex [In P(y|x,w) — Al[wl|3]
= Batch gradient ascent updates:

N
wgtH) — w,gt) + 1 {—)\w,@ + ]E:l xgj)[ym — P(Y = 1|x(3),w(t))]}

= Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wgt) + 1y {—)\wzw + a:z(-t> y® — Py =1|x, w(t))]}
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