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Use k-fold cross validation
" A

= Randomly divide training data into k equal parts

D1""’Dk
= Foreachi

Learn classifier f,5; using data point not in D,

Estimate error of f;,;; on validation set D;:

1
errorp, = ]D\ Z (yj - fD\Di (%’))2

= k-fold cross validation error is average over data splits:

T'rain Train Validat Train

1 kK
ETTOTk— fold = z Z ETTOTD,
Ti=1

= k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only n(k-1)/k

Usually, k =10
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Recap

"
r Given a dataset, begin by splitting into

TRAIN TEST

= Model selection: Use k-fold cross-validation on
TRAIN to train predictor and choose magic

parameters such as A
_ TRAN . S TRAIN-2 VAL TRAIN-2

= Model assessment: Use TEST to assess the
accuracy of the model you output

= Never ever ever ever ever train or choose
parameters based on the test data



Bootstrap: basic idea
"
Given dataset drawn iid samples with CDF F':
1.1.d. ~
D=Az1,...,2n} ~ Fg 0 = t(D)

For b=1,...,B, samples sampled with replacement from D

I e i A

~ sup |[Fp(z) — F(z)] = 0 asn — oo
Fz 60 -

3 2 1 1 2
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Applications

" J
Common applications of the bootstrap:
» Estimate parameters that escape simple analysis like the variance or median of an
estimate

» Confidence intervals
 Estimates of error for a particular example:

AN
D ) 95% confidence interval
w @ o
- < <«
“ ' @ o = 1/
’ .‘
> o | . N . ~ .
’ L}
- -, ° . \ . - '-.‘.
".. ’ F) )
o h » o ! . » k= ¢ - >
o . >
® " -
v ] % e
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
X X X

Figures from Hastie et al
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Takeaways
" I

Advantages:

» Bootstrap is very generally applicable. Build a confidence interval
around anything

» Very simple to use

» Appears to give meaningful results even when the amount of data is very
small

 Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages

 Very few meaningful finite-sample guarantees

» Potentially computationally intensive

* Reliability relies on test statistic and rate of convergence of empirical
CDF to true CDF, which is unknown

» Poor performance on “extreme statistics” (e.g., the max)

-——

Not perfect, but better than nothing.
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Recap
" S

= Learningis...

Collect some data
= E.g., housing info and sale price

Randomly split dataset into TRAIN, VAL, and TEST
= E.g., 80%, 10%, and 10%, respectively
Choose a hypothesis class or model
= E.g., linear with non-linear transformations
Choose a loss function
= E.g., least squares with ridge regression penalty on TRAIN
Choose an optimization procedure

= E.g., set derivative to zero to obtain estimator, cross-validation on
VAL to pick num. features and amount of regularization

Justifying the accuracy of the estimate
= E.g., report TEST error with Bootstrap confidence interval
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Simple Variable Selection

LASSO: Sparse Regression

Machine Learning — CSE546
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Sparsity s = argmin 3 _ (g — )
" I

= Vector w is sparse, if many entries are zero

= Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= |f part of an online system, too slow
If w is sparse, prediction computation only depends on number of non-zeros
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Sparsity s = argmin 3 _ (g — )
"

= Vector w is sparse, if many entries are zero

= Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= |f part of an online system, too slow
= |f wis sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the

Eat Push Run
relevant dimension to make a
prediction? y
Participant s
= E.g., what are the parts of the Pl af
brain associated with particular
words?
Mecan of !
independently
learmned signatures
over all nine
participants

Pars opercularis Postcentral gyrus Superior temporal
(2+24mm) (z=30mm) sulcus (posterior)
(z=12mm)

©2017 Kevin Jamieson

[[BYONN W] wol) ainbi-

10



Sparsity s = argmin 3 _ (g — )

=1

Vector w is sparse, if many entries are zero

Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= |f part of an online system, too slow
= |f wis sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the

Eat Push Run
relevant dimension to make a
prediction? y
Participant Y
= E.g., what are the parts of the Pl af
brain associated with particular
words?
Mecan of "
independently
. . . leamed signatures
How do we find “best over il ine
subset among all possible?

Pars opercularis Postcentral gyrus Superior temporal
(2+24mm) (z=30mm) sulcus (posterior)
(z=12mm)
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Greedy model selection algorithm
" S

= Pick a dictionary of features
e.g., cosines of random inner products
= Greedy heuristic:
Start from empty (or simple) set of features F, = &

Run learning algorithm for current set of features F,
= Obtain weights for these features

Select next best feature h,(x)’

= e.g., h(x) that results in lowest training error learner when
using £+ {h;(x)’}

Fi.; € Fi+ {h(x)’}
Recurse

©2017 Kevin Jamieson
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Greedy model selection

"
= Applicable in many other settings:

Considered later in the course:
= Logistic regression: Selecting features (basis functions)
- Naive Bayes: Selecting (independent) features P(Xi|Y)

= Decision trees: Selecting leaves to expand
= Only a heuiristic!

Finding the best set of k features is computationally
intractable!

Sometimes you can prove something strong about it...

©2017 Kevin Jamieson
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When do we stop???
" S

= Greedy heuristic:

Select next best feature X’
- E.g. h(x) that results in lowest training error
learner when using F,+ {h(x)’}

Recurse  \When do you stop???
= When training error is low enough?
= When test set error is low enough?
= Using cross validation?

|s there a more principled approach?

©2017 Kevin Jamieson 14



Recall Ridge Regression

= Ridge Regressmn objective: )
Wridge = arg mmz —z;w)” + A|w||3

’/+ \+ +-Z1+)\\ - g
Oy e -




Ridge vs. Lasso Regression

= Ridge Regressmn objective: )
Wridge = arg mmz —z;w)” + A|w||3

’/+\\+...+=H F A ,A /

‘/ —
N 4
= Lasso{REge objectlve
wZGSSO — argmlnz ?w +)\||w||1

’/+\\ +— +)\°




Penalized Least Squares

Ridge : r(w) = [lw|lz  Lasso: r(w) = [lw|)

W, = arg minz (yi — a:;-rw)z + Ar(w)



Penalized Least Squares

Ridge : r(w) = [lw|lz  Lasso: r(w) = [lw|)

W, = arg minz (yi — x?w)z + Ar(w)

w
1=1

For any A > 0 for which w, achieves the minimum, there exists a ¥ > 0 such that

mn

~ . 2

@y = arg min E (yi — 2} w) subject to r(A) < v
1=1
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Penalized Least Squares

Ridge : r(w) = |lwll;  Lasso : (w) = [Jwl]s
W, = arg minz (yi — x?w)z + )\’r(w)
1=1

For any A > 0 for which w, achieves the minimum, there exists a ¥ > 0 such that

mn

~ . 2

@y = arg min E (yi — 2} w) subject to () < v
1=1

o " $ (S
| /\lJac
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Optimizing the LASSO Objective
" S

= LASSO solution:

n

wlassmblasso — argmlnz 37 w+b)) —|—)\H’LUH1
1=1
1 n
~ T~
blasso = arg I{Ullil ﬁ Z (yz — I, wlasso))

1=1



Optimizing the LASSO Objective
" S

= LASSO solution:

n

AN - [3 2
Wiassos blasso — arg Izrulll? (yz - (x;l”,w + b)) + )\||’U)H1
T =1
b — ar minli(-—x-Tﬁ? )
lasso g wb T 4 1 Yi : Wlasso
1=

1 o 1 o
So as usual, preprocess to make sure that - Z y; = 0, - Z xz; =0
=1 1=1
so we don’t have to worry about an offset.
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Optimizing the LASSO Objective
" S

LASSO solution: .
Brasso Dlasso = argmin > (y; — (7w + )" + Alwlx
b =
- | T
Z:Zl (yi — 2; Wigsso)) "‘?f ( ﬂﬂ\‘)ﬂy

1 o 1 o
So as usual, preprocess to make sure that - Z y; = 0, - Z xz; =0
=1 1=1
so we don’t have to worry about an offset.

mn
~ . 2
Wiasso — ar'g IIEIIZ (yz - szw) + )‘Hw”l
=1
How do we solve this?
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Coordinate Descent
» I

= Given a function, we want to find minimum

= Often, it is easy to find minimum along a single coordinate:

= How do we pick next coordinate?

=  Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO

©2017 Kevin Jamieson
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Optimizing LASSO Objective
One Coordinate at a Time
"

mn n

d 2 d
Z(yi_xf@-rw)Q-F)\Hle :Z<yz—zwzkwk> +>\Z|wk]
k=1 k=1

1=1 1=1

Fix :)ei‘v'"‘l2 n (

2
(yz‘ - ik wk) MJ) + A Jwg| + Awy]

15)
P

Equivalently:
- N () ?
fwj:argmmg (ri —xi,jwj) + A|wj|
w;

- U v
e D




Convex Functions
» I

= Equivalent definitions of convexity: {(L\ = | X
\7![1)
Se jf‘ﬁcéerlfs [“’] X= b
-l xep
o
f convex: ,5’2 jj
FQOz+(1=Ny) < M)+ 1= Nf(y) Va,y, A € [0,1]
f()_f()+Vf() (y — ) Va,y

= Gradients lower bound convex functions and are unique at x iff
function differentiable at x

= Subgradients generalize gradients to non-differentiable points:
Any supporting hyperplane at x that lower bounds entire function

g is a subgradient at x if f(y) > f(x) + gT(y/—_gp)

©2017 Kevin Jamieson 25



Taking the Subgradient @ =ssun 3" (1)~ em) i,
" J—

= Convex function is minimized at w if O is a sub-gradient at w.

( Iz4 ‘«/J >)
0w, lwi| = (-1, (F wio
—( 1( szo

n

4 "

=1 ¢! €
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Setting Subgradient to O

©2017 Kevin Jamieson

2
Tij wj) + Aw;|

iij < —A
if‘Cj‘ S)\
iij > A\

ifwj <0~
1wa:O
ifwj > 0
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Soft Thresholding
" S

(c; +A)/a; if c; < —A
w; =< 0 if |cj| < A
(c; —A)/aj if c; > A
n mn
a; = foj cj = 22 (?Jz — Zﬂfzk wk)ng
i=1 i=1 Py

From
Kevin Murphy
textbook




Coordinate Descent for LASSO
(aka Shooting Algorithm)
"
= Repeat until convergence
Pick a coordinate / at (random or sequentially)

- Set (c; +A)/a; if c; < —A
wj =193 O if |e;] < A
. Where: (c; —N)/aj if c; > A
mn mn
aj = Zl‘?] Cj = 22 (yz — szk wk>5’3i,j
i=1 i=1 k]

For convergence rates, see Shalev-Shwartz and Tewari 2009

= Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path

From
Kevin Murphy
textbook

10 25 30

\=>0

= Typical approach: select A using cross validation

©2017 Kevin Jamieson

30



Now: LASSO Coefficient Path
" S

0.7

06}

05+

047

03}

02t

01}

©2017 Kevin Jamieson

P = Icavol

-—— age

=&~ |bph

—— 5Vi
“lep

—— lweight |l

N

From

—e—giason . Kevin Murphy

s textbook
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What you need to know
" I

Variable Selection: find a sparse solution to learning
problem

L, regularization is one way to do variable selection

Applies beyond regression

Hundreds of other approaches out there
LASSO objective non-differentiable, but convex = Use
subgradient

No closed-form solution for minimization = Use
coordinate descent

Shooting algorithm is simple approach for solving LASSO
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Classification

Logistic Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 12, 2016
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THUS FAR, REGRESSION:
PREDICT A CONTINUOUS VALUE GIVEN
SOME INPUTS
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Weather prediction revisted

Temperature

GF




Reading Your Brain, Simple Example

: ] Bl ] [Mitchell et al.]
Pairwise classification accuracy: 85%

Person P— Animal




Classification

"
= Learn: X —>Y
X — features
Y — target classes

= Conditional probability: P(Y|X)

= Suppose you know P(Y|X) exactly, how should
you classify?
Bayes optimal classifier:

eeeeeeeeeeeeeeeeee



Link Functions

" J
= Estimating P(Y|X): Why not use standard linear
regression?

= Combining regression and probability?
Need a mapping from real values to [0,1]
A link function!
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Logistic
. 1
function

Logistic Regression (orsigmeia): 1+ cn(-)

1

" B
. Learn P(Y|X) directly -
Assume a particular functional form for link 0s
function §os
Sigmoid applied to a linear function of the input ™
features: :
1
P(Y =0|X,W) = v

14 exp(wog+ X ; w; X;) %

o

Features can be discrete or continuous!

©Kevin Jamieson 2017



Understanding the sigmoid

g(wo + Z wixT;) =

WO='2, W1

=-1

e

.

1

wy=0, w,=-1

1+ W02, Wi

w,=0, w,=-0.5

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0—6 -4 -2 0

/

©Kevin Jamieson 2017




Very convenient!

‘ 1
"P(Y =0L|X =< Xq,...Xn >) —

1+ exp(wg + >; w; X;)
implies

exp(wo + >; wi X;)
1 + exp(wg + 3 w; X;)

p(y —1 )|X =< X1,...Xn >) =



Very convenient!

1

|
SP(Y =0L|X =< X1,..X, >) =
" 1+ exp(wo + X w; X;)

Implies

exp(wo + >; w; X;)
1+ exp(wg + >; w; X;)

P(Y =1 )lX =< Xl, ...Xn >) pum—

Implies
P(Y =1|X)
= exp(wo + ) w;X;)
PR =0.1X) ; o linear
classification
Implies 1 rule!
P(Y =1|X)
n — . X
Py =ol|x) W0 %:w" z
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Logistic Regression —
a Linear classifier

1+ exp(—2) *

[
---------

(wo + ; wiT;) = TS e

P(Y = 0|X)
(Y =1[X)

= wQ -+ Zw’iXi >0
{

43



Loss function: Conditional Likelihood
"
Have a bunch of iid data of the form: {(:EZ,yz) ?:1 T ERd, y; € {—1,1}

1
1 + exp(w'x)

PlY = —1l|z,w) =

exp(wlz) L

1+ exp(w!z) ) l"'@rp(%}?)

PY =1|z,w) =

This is equivalent to:

1
P(Y = =
( ylz, w) 1 + exp(—ywtx)

So we can compute the maximum likelihood estimator:

n
WNLE = arg mng P(y;|z;, w)
i=1
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Loss function: Conditional Likelihood
" S

= Have a bunch of iid data of the form: {(:EZ, yi)}?zl Ti € Rd, y; € {—1,1}

Wy LE = arg IIl/L?X H P(yi|zi, w) P = ylz,w) = 1+ exp(l—y wTz)
VE= amm
= Yo - (oj( )
- &g _ 7
D)
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Loss function: Conditional Likelihood
"
= Have a bunch of iid data of the form: {(:r:@,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—yw'z)

n
'&}MLE :argmgan(yi|xi,w) P(Y = ylz,w) =
=1

= arg mui)n Z log(1 + exp(—y; ] w))
i=1



Loss function: Conditional Likelihood
"
Have a bunch of iid data of the form: {(:E@,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—ywTz)

mn
WM LE :argmaXHP(yﬂxi,w) PY =ylz,w) =
w
i=1
= arg min Z log(1 + exp(—y; ] w))
i=1

Logistic Loss: £;(w) = log(1 + exp(—y; z1 w))

Squared error Loss: /;(w) = (y; — x!w)*  (MLE for Gaussian noise)
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Loss function: Conditional Likelihood
"

Have a bunch of iid data of the form: {(:L‘Z, yz) ?:1 Ti € Rd, y; € {—1,1}

mn
. B B 1
WMLE — arg m,fUlX H P(yi|zi, w) P = ylz,w) = 1+ exp(—ywTz)
=1
= arg mui)n Z log(1 + exp(—y; x} w)) = J(w)
1=1

What does J(w) look like? Is it convex?
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Loss function: Conditional Likelihood
*
Have a bunch of iid data of the form: {(wz,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—ywTz)

mn

WMLE :argmaXHP(yﬂxi,w) P(Y =ylz,w) =
B

= arg mui)nz log(1 + exp(—y; x} w)) = J(w)

=1

Good news: J(w) is convex function of w, no local optima problems
Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize (next time)
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Linear Separability
" S

arg mui)ﬂ Z log(1 + exp(—y; z; w)) When is this loss small?

i=1

Eﬂ:‘ I
== -
I:||:||:I |
i = -
T & _
o, T - _
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Large parameters — Overfitting

1 1 1

1+e 2 1+ e— 2 1+ e—100z

= |f data is linearly separable, weights go to infinity

In general, leads to overfitting:
= Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
" J—

= Add regularization penalty, e.g., L,:

arg m@gnz log(1 + exp(—y; z; w)) + A||wl||3
i=1

= Practical note about w:



