Use *k*-fold cross validation

- Randomly **divide training data into** *k* **equal parts**
 - D_1, \ldots, D_k
- For each *i*
 - Learn classifier $f_{D\setminus D_i}$ using data point not in D_i
 - Estimate error of $f_{D\setminus D_i}$ on validation set D_i:
 $$
 \text{error}_{D_i} = \frac{1}{|D_i|} \sum_{(x_j, y_j) \in D_i} (y_j - f_{D\setminus D_i}(x_j))^2
 $$
- **k**-fold cross validation error is average over data splits:
 $$
 \text{error}_{k\text{-fold}} = \frac{1}{k} \sum_{i=1}^{k} \text{error}_{D_i}
 $$
- **k**-fold cross validation properties:
 - **Much faster to compute** than LOO
 - More (pessimistically) **biased** – using much less data, only $n(k-1)/k$
 - Usually, $k = 10$
Recap

- Given a dataset, begin by splitting into

- **Model selection**: Use k-fold cross-validation on **TRAIN** to train predictor and choose magic parameters such as λ

- **Model assessment**: Use **TEST** to assess the accuracy of the model you output
 - Never ever ever ever ever train or choose parameters based on the test data
Bootstrap: basic idea

Given dataset drawn iid samples with CDF F_Z:

$$D = \{z_1, \ldots, z_n\} \overset{i.i.d.}{\sim} F_Z \quad \hat{\theta} = t(D)$$

For $b=1,\ldots,B$, samples sampled with replacement from D

$$D^b = \{z_1^b, \ldots, z_n^b\} \overset{i.i.d.}{\sim} F_{Z,n} \quad \theta^b = t(D^b)$$

$$\sup_x |\hat{F}_n(x) - F(x)| \to 0 \quad \text{as} \quad n \to \infty$$
Applications

Common applications of the bootstrap:
• Estimate parameters that escape simple analysis like the variance or median of an estimate
• Confidence intervals
• Estimates of error for a particular example:

\[D \quad \hat{\theta} \quad \theta^*_b \text{ for } b = 1, \ldots, 10 \quad 95\% \text{ confidence interval} \]

Figures from Hastie et al
Takeaways

Advantages:
• Bootstrap is very generally applicable. Build a confidence interval around anything
• Very simple to use
• Appears to give meaningful results even when the amount of data is very small
• Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages
• Very few meaningful finite-sample guarantees
• Potentially computationally intensive
• Reliability relies on test statistic and rate of convergence of empirical CDF to true CDF, which is unknown
• Poor performance on “extreme statistics” (e.g., the max)

Not perfect, but better than nothing.
Recap

- Learning is...
 - Collect some data
 - E.g., housing info and sale price
 - Randomly split dataset into TRAIN, VAL, and TEST
 - E.g., 80%, 10%, and 10%, respectively
 - Choose a hypothesis class or model
 - E.g., linear with non-linear transformations
 - Choose a loss function
 - E.g., least squares with ridge regression penalty on TRAIN
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain estimator, cross-validation on VAL to pick num. features and amount of regularization
 - Justifying the accuracy of the estimate
 - E.g., report TEST error with Bootstrap confidence interval
Sparsity

Vector \mathbf{w} is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If $\text{size}(\mathbf{w}) = 100$ Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If \mathbf{w} is sparse, prediction computation only depends on number of non-zeros

\[
\hat{w}_{LS} = \arg \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - x_i^T \mathbf{w})^2
\]
Sparsity

\[
\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2
\]

Vector \(w \) is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If size(\(w \)) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If \(w \) is sparse, prediction computation only depends on number of non-zeros
 - **Interpretability**: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?

Figure from Tom Mitchell

©2017 Kevin Jamieson
Sparsity

Vector \(\mathbf{w} \) is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If size(\(\mathbf{w} \)) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If \(\mathbf{w} \) is sparse, prediction computation only depends on number of non-zeros
 - **Interpretability**: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?

- How do we find “best” subset among all possible?

\[
\hat{\mathbf{w}}_{LS} = \arg \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - x_i^T \mathbf{w})^2
\]
Greedy model selection algorithm

- Pick a dictionary of features
 - e.g., cosines of random inner products

- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain weights for these features
 - Select next best feature $h_i(x)^*$
 - e.g., $h_j(x)$ that results in lowest training error learner when using $F_t + \{h_j(x)^*\}$
 - $F_{t+1} \leftarrow F_t + \{h_i(x)^*\}$
 - Recurse
Greedy model selection

- Applicable in many other settings:
 - Considered later in the course:
 - Logistic regression: Selecting features (basis functions)
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - Finding the best set of k features is computationally intractable!
 - Sometimes you can prove something strong about it…
When do we stop???

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i^*
 - E.g. $h_j(x)$ that results in lowest training error learner when using $F_t + \{h_j(x)^*\}$
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- Using cross validation?

Is there a more principled approach?
Recall Ridge Regression

- Ridge Regression objective:
 \[
 \hat{\mathbf{w}}_{\text{ridge}} = \arg \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - x_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2_2
 \]
Ridge vs. Lasso Regression

- Ridge Regression objective:
 \[
 \hat{w}_{ridge} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda \|w\|^2_2
 \]

- Lasso Ridge objective:
 \[
 \hat{w}_{lasso} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda \|w\|_1
 \]
Penalized Least Squares

Ridge: \(r(w) = \|w\|_2^2 \)
Lasso: \(r(w) = \|w\|_1 \)

\[\hat{w}_r = \arg\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w) \]
Penalized Least Squares

Ridge: \(r(w) = \|w\|^2_2 \)
Lasso: \(r(w) = \|w\|_1 \)

\[
\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)
\]

For any \(\lambda \geq 0 \) for which \(\hat{w}_r \) achieves the minimum, there exists a \(\nu \geq 0 \) such that

\[
\hat{w}_r = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \quad \text{subject to } r(\lambda) \leq \nu
\]
Penalized Least Squares

Ridge: \(r(w) = \|w\|_2^2 \) \hspace{1cm} Lasso: \(r(w) = \|w\|_1 \)

\[
\hat{w}_r = \arg\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)
\]

For any \(\lambda \geq 0 \) for which \(\hat{w}_r \) achieves the minimum, there exists a \(\nu \geq 0 \) such that

\[
\hat{w}_r = \arg\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \text{ subject to } r(w) \leq \nu
\]
Optimizing the LASSO Objective

- LASSO solution:

\[
\hat{\omega}_{\text{lasso}}, \hat{b}_{\text{lasso}} = \arg \min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2 + \lambda ||w||_1
\]

\[
\hat{b}_{\text{lasso}} = \arg \min_{w,b} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{\omega}_{\text{lasso}})
\]
Optimizing the LASSO Objective

- LASSO solution:

\[
\hat{w}_{lasso}, \hat{b}_{lasso} = \arg\min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2 + \lambda ||w||_1
\]

\[
\hat{b}_{lasso} = \arg\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{w}_{lasso})
\]

So as usual, preprocess to make sure that \(\frac{1}{n} \sum_{i=1}^{n} y_i = 0, \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \)
so we don’t have to worry about an offset.
Optimizing the LASSO Objective

- LASSO solution:

\[
\hat{w}_{\text{lasso}}, \hat{b}_{\text{lasso}} = \arg \min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2 + \lambda ||w||_1
\]

\[
\hat{b}_{\text{lasso}} = \arg \min \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{w}_{\text{lasso}})
\]

So as usual, preprocess to make sure that \(\frac{1}{n} \sum_{i=1}^{n} y_i = 0, \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \)

so we don’t have to worry about an offset.

\[
\hat{w}_{\text{lasso}} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_1
\]

How do we solve this?
Coordinate Descent

- Given a function, we want to find minimum

- Often, it is easy to find minimum along a single coordinate:

 ![Plot](image)

- How do we pick next coordinate?

- Super useful approach for *many* problems
 - Converges to optimum in some cases, such as LASSO
Optimizing LASSO Objective
One Coordinate at a Time

\[
\sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda |w|_1 = \sum_{i=1}^{n} \left(y_i - \sum_{k=1}^{d} x_{i,k} w_k \right)^2 + \lambda \sum_{k=1}^{d} |w_k|
\]

Fix \(j \in \{1, \ldots, d\}\):

\[
= \sum_{i=1}^{n} \left((y_i - \sum_{k \neq j} x_{i,k} w_k) - x_{i,j} w_j \right)^2 + \lambda \sum_{k \neq j} |w_k| + \lambda |w_j|
\]

Equivalently:

\[
\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j|
\]
Convex Functions

- **Equivalent definitions of convexity:**

 \[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y, \lambda \in [0, 1] \]

 \[f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \]

- **Gradients** lower bound convex functions and are unique at \(x \) iff function differentiable at \(x \)

- **Subgradients** generalize gradients to non-differentiable points:
 - Any supporting hyperplane at \(x \) that lower bounds entire function

 \[g \text{ is a subgradient at } x \text{ if } f(y) \geq f(x) + g^T (y - x) \]
Taking the Subgradient

- Convex function is minimized at \(w \) if 0 is a sub-gradient at \(w \).

\[
\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j|
\]

\[
\partial_{w_j} |w_j| = \begin{cases}
1 & \text{if } w_j > 0 \\
\in [-1, 1] & \text{if } w_j = 0 \\
-1 & \text{if } w_j < 0
\end{cases}
\]

\[
\partial_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 = -2 \sum_{i \in I} x_{i,j} r_i^{(j)} + 2 \sum_{i \in I} x_{i,j}^2 w_j
\]
Setting Subgradient to 0

\[
\partial w_j \left(\sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j| \right) = \begin{cases}
 a_j w_j - c_j - \lambda & \text{if } w_j < 0 \\
 [-c_j - \lambda, -c_j + \lambda] & \text{if } w_j = 0 \\
 a_j w_j - c_j + \lambda & \text{if } w_j > 0
\end{cases}
\]

\[a_j = \left(\sum_{i=1}^{n} x_{i,j}^2 \right) \quad \quad c_j = 2 \left(\sum_{i=1}^{n} r_i^{(j)} x_{i,j} \right)\]

\[
\hat{w}_j = \arg \min_{w_j} \sum_{i=1}^{n} \left(r_i^{(j)} - x_{i,j} w_j \right)^2 + \lambda |w_j|
\]

\[
\hat{w}_j = \begin{cases}
 (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\
 0 & \text{if } |c_j| \leq \lambda \\
 (c_j - \lambda)/a_j & \text{if } c_j > \lambda
\end{cases}
\]
Soft Thresholding

\[\hat{w}_j = \begin{cases}
\frac{(c_j + \lambda)}{a_j} & \text{if } c_j < -\lambda \\
0 & \text{if } |c_j| \leq \lambda \\
\frac{(c_j - \lambda)}{a_j} & \text{if } c_j > \lambda
\end{cases} \]

\[a_j = \sum_{i=1}^{n} x_{i,j}^2 \]

\[c_j = 2 \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{i,k} w_k \right) x_{i,j} \]

From Kevin Murphy textbook
Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence
 - Pick a coordinate \(l \) at (random or sequentially)
 - Set:
 \[
 \hat{w}_j = \begin{cases}
 \frac{(c_j + \lambda)}{a_j} & \text{if } c_j < -\lambda \\
 0 & \text{if } |c_j| \leq \lambda \\
 \frac{(c_j - \lambda)}{a_j} & \text{if } c_j > \lambda
 \end{cases}
 \]
 - Where:
 \[
 a_j = \sum_{i=1}^{n} x_{i,j}^2 \\
 c_j = 2 \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{i,k} w_k \right) x_{i,j}
 \]
 - For convergence rates, see Shalev-Shwartz and Tewari 2009
 - Other common technique = LARS
 - Least angle regression and shrinkage, Efron et al. 2004
Recall: *Ridge Coefficient Path*

- Typical approach: select λ using cross validation

From Kevin Murphy textbook
Now: **LASSO Coefficient Path**

From Kevin Murphy textbook
What you need to know

- Variable Selection: find a sparse solution to learning problem
- L_1 regularization is one way to do variable selection
 - Applies beyond regression
 - Hundreds of other approaches out there
- LASSO objective non-differentiable, **but convex** → Use subgradient
- No closed-form solution for minimization → Use coordinate descent
- Shooting algorithm is simple approach for solving LASSO
Classification
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 12, 2016
THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS
Weather prediction revisited

Temperature 63°F
Reading Your Brain, Simple Example

Pairwise classification accuracy: 85%

Person

Animal

[Mitchell et al.]
Classification

- **Learn**: $f: \mathbf{X} \rightarrow \mathbf{Y}$
 - \mathbf{X} – features
 - \mathbf{Y} – target classes

- Conditional probability: $P(\mathbf{Y} | \mathbf{X})$

- Suppose you know $P(\mathbf{Y} | \mathbf{X})$ exactly, how should you classify?
 - Bayes optimal classifier:

- **How do we estimate $P(\mathbf{Y} | \mathbf{X})$?**
Link Functions

- Estimating $P(Y|X)$: Why not use standard linear regression?

- Combining regression and probability?
 - Need a mapping from real values to $[0,1]$
 - A link function!
Logistic Regression

Learn $P(Y|X)$ directly
- Assume a particular functional form for link function
- Sigmoid applied to a linear function of the input features:

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Features can be discrete or continuous!
Understanding the sigmoid

\[g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}} \]

- \(w_0 = -2, w_1 = -1 \)
- \(w_0 = 0, w_1 = -1 \)
- \(w_0 = 0, w_1 = -0.5 \)
Very convenient!

\[P(Y = 0 \mid X = < X_1, \ldots, X_n >) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[P(Y = 1 \mid X = < X_1, \ldots, X_n >) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]
Very convenient!

\[
P(Y = 0 \mid X = \langle X_1, \ldots, X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

implies

\[
P(Y = 1 \mid X = \langle X_1, \ldots, X_n \rangle) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

implies

\[
\frac{P(Y = 1 \mid X)}{P(Y = 0 \mid X)} = \exp(w_0 + \sum_i w_i X_i)
\]

implies

\[
\ln \frac{P(Y = 1 \mid X)}{P(Y = 0 \mid X)} = w_0 + \sum_i w_i X_i
\]

linear classification rule!
Logistic Regression – a Linear classifier

\[g(w_0 + \sum_i w_ix_i) = \frac{1}{1 + e^{w_0 + \sum_i w_ix_i}} \]

\[\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_iX_i \quad > 0 \]
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^n \), \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
P(Y = -1|x, w) = \frac{1}{1 + \exp(w^T x)}
\]

\[
P(Y = 1|x, w) = \frac{\exp(w^T x)}{1 + \exp(w^T x)} = \frac{1}{1 + \exp(-w^T x)}
\]

- This is equivalent to:

\[
P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}
\]

- So we can compute the maximum likelihood estimator:

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^n P(y_i|x_i, w)
\]
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^n \) \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^n P(y_i|x_i, w)
\]

\[
P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}
\]

\[
= \arg \min_{w} - \log(1)
\]

\[
= \arg \min_{w} - \sum_i
\]
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^{n} \) \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^{n} P(y_i | x_i, w) \\
= \arg \min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))
\]

\[P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}\]
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: \(\{ (x_i, y_i) \}_{i=1}^n \) \(x_i \in \mathbb{R}^d \), \(y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^{n} P(y_i | x_i, w) \\
= \arg \min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))
\]

Logistic Loss: \(\ell_i(w) = \log(1 + \exp(-y_i x_i^T w)) \)

Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \) (MLE for Gaussian noise)
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$

$$\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^n P(y_i|x_i, w) \quad P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}$$

$$= \arg \min_w \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T w)) = J(w)$$

What does $J(w)$ look like? Is it convex?
Have a bunch of iid data of the form: \(\{(x_i, y_i)\}_{i=1}^{n} \) \(x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\} \)

\[
\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^{n} P(y_i|x_i, w) \\
= \arg \min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) = J(w)
\]

Good news: \(J(w) \) is convex function of \(w \), no local optima problems

Bad news: no closed-form solution to maximize \(J(w) \)

Good news: convex functions easy to optimize (next time)
Linear Separability

$$\arg \min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))$$

When is this loss small?
Large parameters \rightarrow Overfitting

- If data is linearly separable, weights go to infinity

- In general, leads to overfitting:
 - Penalizing high weights can prevent overfitting…
Regularized Conditional Log Likelihood

- Add regularization penalty, e.g., L₂:

\[
\arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) + \lambda \|w\|^2
\]

- Practical note about \(w_0 \):

©Kevin Jamieson 2017