Announcements

If you have not already, please take this anonymous poll (also
linked to on Slack). Thank you! https://tinyurl.com/ybhradfn

Start thinking about projects, dates are up
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Review:

Cross-Validation

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 12, 2016



Use k-fold cross validation
" A

= Randomly divide training data into k equal parts
D.,....D,
= Foreach/
Learn classifier f,; using data point not in D;
Estimate error of f,,; on validation set D;:
2
‘D‘ Z (yj — fD\Di (IJ))
’ (xjayj)epz .
= k-fold cross validation error is average over data splits:

Train Train Validat Train

errorp, =

1 Kk
C’.'I‘TOTA-_fO[([ am— Z Z C’.'I"I’O‘I"Dl.
=1

= k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only n(k-1)/k
Usually, k =10
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Recap
" JEE—
g Given a dataset, begin by splitting into

TRAIN TEST

= Model selection: Use k-fold cross-validation on
TRAIN to train predictor and choose magic

parameters such as A

TRAIN € TRAIN-2 VAL-2 TRAIN-2
VAL-3 TRAIN-3

= Model assessment: Use TEST to assess the
accuracy of the model you output

= Never ever ever ever ever train or choose
parameters based on the test data




Bootstrap: basic idea
" JEEE—
Given dataset drawn iid samples with CDF F':
1.1.d. ~
D={z1,...,2,} ~ Fy ) = t(D)

For b=1,...,B, samples sampled with replacement from D

D*b — {sz, o z;';b} b F\Z,n 0" = t(D*b)

sup |Fo(z) — F(z)] = 0 asn — oo

Fz 60

2 _-
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Applications

Common applications of the bootstrap:

« Estimate parameters that escape simple analysis like the variance or median of an
estimate

» Confidence intervals

» Estimates of error for a particular example:
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Figures from Hastie et al
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Takeaways
"

Advantages:

» Bootstrap is very generally applicable. Build a confidence interval
around anything

» Very simple to use

« Appears to give meaningful results even when the amount of data is very
small

» Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages

» Very few meaningful finite-sample guarantees

» Potentially computationally intensive

 Reliability relies on test statistic and rate of convergence of empirical
CDF to true CDF, which is unknown

» Poor performance on “extreme statistics” (e.g., the max)

Not perfect, but better than nothing.
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Recap
"

= Learning is...

Collect some data
= E.g., housing info and sale price

Randomly split dataset into TRAIN, VAL, and TEST
= E.g., 80%, 10%, and 10%, respectively
Choose a hypothesis class or model
= E.g., linear with non-linear transformations
Choose a loss function
» E.g., least squares with ridge regression penalty on TRAIN
Choose an optimization procedure

= E.g., set derivative to zero to obtain estimator, cross-validation on
VAL to pick num. features and amount of regularization

Justifying the accuracy of the estimate
= E.g., report TEST error with Bootstrap confidence interval
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Simple Variable Selection

LASSO: Sparse Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 11, 2016



SparSity Wrs :zaurgrnui)niz:;(yi—x;fw)2
" A

= Vector w is sparse, if many entries are zero

= Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= |If part of an online system, too slow
= If wis sparse, prediction computation only depends on number of non-zeros

©2017 Kevin Jamieson
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Sparsity s = wgmin Y (v = ow)
" S

= Vector w is sparse, if many entries are zero

= Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= |f part of an online system, too slow
= If wis sparse, prediction computation only depends on number of non-zeros
Interpretability: \What are the

Eat Push Run
relevant dimension to make a
prediction? B
Participant
= E.g., what are the parts of the Pl
brain associated with particular
words?
Mecan of !
independently
leamned signatures
over all nine
partiCcipants

Pars opercularis Postcentral gyrus Superior temporal
(z=24mm) (z=30mm) sulcus (posterior)
(z=12mm)

©2017 Kevin Jamieson

[IBYONAl WO wod) 8Inbi

11



Sparsity s = argminy (e —fw)”

1=1

Vector w is sparse, if many entries are zero

Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= |If part of an online system, too slow
= If wis sparse, prediction computation only depends on number of non-zeros

Interpretability: \What are the

} ) Eat Push Run
relevant dimension to make a

prediction? N
articipan
= E.g., what are the parts of the Pl
brain associated with particular
words?
Mean of L
independently
) . . learned signatures
How do we find "best over ol ine
subset among all possible?
Pars opercularis Postcentral gyrus Superior temporal

(z=24mm) (z=30mm) sulcus (posterior)
(z=12mm)
©2017 Kevin Jamieson
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Greedy model selection algorithm
" S

= Pick a dictionary of features
e.g., cosines of random inner products

=« Greedy heuristic:
Start from empty (or simple) set of features F,= &
Run learning algorithm for current set of features F,
= Obtain weights for these features

Select next best feature h,(x)"

- e.g., hi(x) that results in lowest training error learner when
using F,+ {h(x)’}

Fi.; € F+{h(x)}
Recurse

©2017 Kevin Jamieson
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Greedy model selection

" J——
= Applicable in many other settings:

Considered later in the course:
= Logistic regression: Selecting features (basis functions)
- Naive Bayes: Selecting (independent) features P(X|Y)

= Decision trees: Selecting leaves to expand
= Only a heuristic!

Finding the best set of k features is computationally
intractable!

Sometimes you can prove something strong about it...

©2017 Kevin Jamieson
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When do we stop???
" S

= Greedy heuristic:

Select next best feature X;’

- E.g. h(x) that results in lowest training error
learner when using F;+ {h,(x)’}

Recurse  \when do you stop???
= When training error is low enough?
= When test set error is low enough?
= Using cross validation?

|s there a more principled approach?
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Recall Ridge Regression

]
= Ridge Regressmn objective:
T

2
wmdge — arg mlnz — &y w) + )‘HwH%

‘. N, +-H+>\\ A
YR




Ridge vs. Lasso Regression

N
o
= Ridge Regressmn objective: 5
wmdge — a’rgmlnz - szw) + )‘HwH%
1=1
- —— A
/ + \ +... .+ + )\\ g
v .
i A 4
= Lasso Ridge objectlve )
Wigsso = arg min Z —z]w)” + Mwl|;

v

1=1
- N = &£
:/+\ + _+P o+ )\



Penalized Least Squares

Ridge : r(w) = [[w]l; ~ Lasso: r(w) = [|w||

W, = arg minz (yi — x?w)Z + Ar(w)

w
1=1



Penalized Least Squares

Ridge : r(w) = |jw|lz  Lasso: r(w) = [|w]]x

W, = arg minz (yi — x?w)Z + Ar(w)

w
1=1

For any A > 0 for which w, achieves the minimum, there exists a ¥ > 0 such that

n

~ . 2

@, =argmin » (y; —x; w)"  subject to r(\) < v
1=1

©2017 Kevin Jamieson 19



Penalized Least Squares

Ridge : r(w) = |jw|lz  Lasso: r(w) = [|w]]x

W, = arg minz (yi — x?w)Z + Ar(w)

w
1=1

For any A > 0 for which w, achieves the minimum, there exists a ¥ > 0 such that

n

~ . 2

@, =argmin » (y; —x; w)"  subject to r(\) < v
1=1

+
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Optimizing the LASSO Objective

" A
= LASSO solution:

n
~ a . 2
Wiassos blasso = arg IQI,UHI?Z (yz - (CU:‘LTUJ + b)) + AHle
=1

n

~ 1
. T AN
blasso = arg min — E (yz — &y wlasso))
w,b N “

=1



Optimizing the LASSO Objective

" A
= LASSO solution:

n

~ T . 2
Wiassor Dlasso = argmin »  (yi — (z; w +0))" + Allwl]x
=1
1 . 1 B T ~
blasso = arg Iggl E Zl (yz — &y wlasso))
1=

1 « 1
So as usual, preprocess to make sure that - Z y; = 0, - Z x;, =0
=1 1=1
so we don’t have to worry about an offset.




Optimizing the LASSO Objective

" A
= LASSO solution:

n
~ T . 2
Wiassor Dlasso = argmin »  (yi — (z; w +0))" + Allwl]x
=1
1 . 1 B T ~
blasso = arg Irg}(? E Zl (yz — &y wlasso))
1=

1 « 1
So as usual, preprocess to make sure that - Z y; = 0, - Z x;, =0
=1 1=1
so we don’t have to worry about an offset.

mn
~ . 2
Wiasso — al'g mﬂ%n Z (yz - CI]?’UJ) + >‘||w||1
1=1
How do we solve this?
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Coordinate Descent
" A

= Given a function, we want to find minimum

= Often, it is easy to find minimum along a single coordinate:

= How do we pick next coordinate?

= Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO

©2017 Kevin Jamieson
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Optimizing LASSO Objective
One Coordinate at a Time
"

n n

d 2 d
Z(yi_fcérw)QJr)\Hle :Z <yzzxzkwk> +)\Z|wk]
k=1 k=1

1=1 1=1

2
= ((y =S wipw) - wi wj) A lwi] + A
1=1

k#j k#j

Equivalently:

w; = arg min ” P g w, 2—I—)\|w-|
j — argiil i i,j Wy j
J .
1=1



Convex Functions
» B

= Equivalent definitions of convexity:

A\t

f convex:
O+ (1= A)y) < Af(@) + (1 - N () v,y A € [0,1]
fly) > f(x) + V() (y — ) v,y

= Gradients lower bound convex functions and are unique at x iff
function differentiable at x

= Subgradients generalize gradients to non-differentiable points:
Any supporting hyperplane at x that lower bounds entire function

g is a subgradient at z if f(y) > f(z) + ¢' (y — z)

©2017 Kevin Jamieson
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Taking the Subgradient @ =sund- (' r,w)
" J—

= Convex function is minimized at w if O is a sub-gradient at w.

awj ‘wj‘ —

1=1

©2017 Kevin Jamieson 27



Setting Subgradient to O
" J———

y
CLj’U}j —Cj —)\

&wj (Z (’I",L(j) — 337;73' ’U)j>2 + )\w3> = < [—Cj — )\, —Cj + )\]

1=1

\ajwj — Cj —|— )\

r iz 5)

n

: 2
Q/ﬁj = arg mmz (7",&(‘7) — L4 wj) + >\|w]|

©2017 Kevin Jamieson

1=1

f(cj—l—)\)/aj iij<—)\

\(cj—)\)/aj iij>)\

if’wj<0
lf’wj:O
ifwj>0
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Soft Thresholding

"
((Cj—F)\)/CLj iij<—)\
\(cj—)\)/aj iij>)\

n
aj = :Ui,j J Yi 1,k Wk | L

i=1 i=1 k#j

From
. Kevin Murphy
textbook




Coordinate Descent for LASSO
(aka Shooting Algorithm)
" J—
= Repeat until convergence
Pick a coordinate / at (random or sequentially)

= Set: ((cj X )\)/aj if ;< -\
w;j =40 if [c;] < A
= Where: \(Cj — A)/aj if Cj > A
aj =D T, =2 (yz =D Tk w’f)f’;w
i=1 i=1 k]

For convergence rates, see Shalev-Shwartz and Tewari 2009

= Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
" JEE—

= Typical approach: select A using cross validation

©2017 Kevin Jamieson
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Now: LASSO Coefficient Path
" A

©2017 Kevin Jamieson
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What you need to know
" JE

Variable Selection: find a sparse solution to learning
problem

L, regularization is one way to do variable selection

Applies beyond regression

Hundreds of other approaches out there
LASSO objective non-differentiable, but convex = Use
subgradient

No closed-form solution for minimization = Use
coordinate descent

Shooting algorithm is simple approach for solving LASSO
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Classification

Logistic Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 12, 2016
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THUS FAR, REGRESSION:
PREDICT A CONTINUOUS VALUE GIVEN
SOME INPUTS



Weather prediction revisted

Temperature

GF




Reading Your Brain, Simple Example

[Mitchell et al.]
Pairwise classification accuracy: 85%

Person L o Animal




Classification

" J—
= Learn: f:X —>Y
X — features
Y — target classes

= Conditional probability: P(Y|X)

= Suppose you know P(Y|X) exactly, how should
you classify?
Bayes optimal classifier:

= How do we estimate P(Y|X)?



Link Functions

" JE——
= Estimating P(Y|X): Why not use standard linear
regression?

= Combining regression and probability?
Need a mapping from real values to [0,1]
A link function!



Logistic
] 1
function

Logistic Regression  (orsigmoiay: 1+ean(-2)

1r

" JEE
» Learn P(Y|X) directly -
Assume a particular functional form for link o8
function §os |
Sigmoid applied to a linear function of the input ™
features: Oj
1
P(Y =0|X,W) = ' |
14+ exp(wo + X wi X;) % g

Features can be discrete or continuous!
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0.9

0.3

Understanding the sigmoid

g(wo + Z wiT;) =

W0='2, W1 ='1

s

/

1

wy,=0, w,=-1

0.4
0.3
0.2
0.1
% 4 2 :

1
0.9 ]
0.8 ]
0.7 ]
0.6 ]
0.5 /

0
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Very convenient!

implies

1

1 + exp(wg + >; w; X;)

exp(wg + >; w; X;)

1+ exp(wg + >2; w; X;)

42



Very convenient!

. 1
N
N P(Y =0L|X =< X1,...X >) —
" 1+ exp(wg + X; w; X;)

Implies

exp(wo + >; w; X;)
1 + exp(wo + >°; w;i X;)

implies
P(Y =1|X)
= exp(wo + ) w;X;)
Py =0.1X) z’: o linear
classification
Implies 1 rule!
Py =1)|X)
n — - X -
P(y =ol|x) o zz.:w’ 7’
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Logistic Regression—
a Linear classifier 1+ exp(—2) °
JE :
.. 6666666666
(wo + Y wiz;) = 1

g(wo ;wzmz - 1+eu70+Z,¢wimi

P(Y =0|X) .

"oy =1x) w0 %:wzx,,,



Loss function: Conditional Likelihood
" A
Have a bunch of iid data of the form: {(x;, %)}y  z; € RY, gy, € {—1,1}

1
1 4+ exp(w!x)

PY = —1|z,w) =
exp(w!x)

P(Y =1|z,w) = T oxp(w72)

This is equivalent to:

1

P(Y = =

So we can compute the maximum likelihood estimator:

mn
WM LE = arg mng P(y;|zi, w)
i—1
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Loss function: Conditional Likelihood
" A
- Have a bunch of iid data of the form: {(z;,¥;)}iey x; € RY, y; € {—1,1}

1
1+ exp(—ywTx)

mn
WA LE :argmgan(yi]xi,w) P(Y = ylz,w) =
i=1



Loss function: Conditional Likelihood
" A
- Have a bunch of iid data of the form: {(z;,¥;)}iey x; € RY, y; € {—1,1}

1
1+ exp(—ywTx)

mn
WA LE :arngXHP(yi]a:i,w) P(Y = ylz,w) =
i=1

= arg mui)n Z log(1 + exp(—y; 1 w))
i=1



Loss function: Conditional Likelihood
" A
Have a bunch of iid data of the form: {(x;, %)}y  z; € RY, gy, € {—1,1}

1
1+ exp(—ywTx)

n
WA LE :argmaXHP(yi]a:i,w) P(Y = ylz,w) =
w
i=1
= arg min Z log(1 + exp(—y; 1 w))
i=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; z} w))

Squared error Loss: /;(w) = (y; — x} w)?  (MLE for Gaussian noise)
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Loss function: Conditional Likelihood
"

Have a bunch of iid data of the form: {(:Uz,yz) ?:1 Ti € Rd, y; € {—1,1}

n
. B B 1
WMLE — arg mgx H P(yz ’33757 ”UJ) P =ylz,w) = 1+ exp(—ywTx)
1=1
— arg mui)n Z log(1 + exp(—y; ] w)) = J(w)
i=1

What does J(w) look like? Is it convex?
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Loss function: Conditional Likelihood
" A
Have a bunch of iid data of the form: {(x;, %)}y  z; € RY, gy, € {—1,1}

1
1+ exp(—ywTx)

n
{DMLE :argmaXHP(yi]a:i,w) PY =ylr,w) =
w
1=1
= arg m&nZlog(l + exp(—y; x?w)) = J(w)

1=1

Good news: J(w) is convex function of w, no local optima problems
Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize (next time)
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Linear Separability
" S

arg muijn Z log(1 4 exp(—y; z; w)) When is this loss small?

i=1

I:[IIZI I
=5 ]
':H:' [
3 - =
T L _
+ 4 T - _



Large parameters — Overfitting

1 1 1

14+e 2 14 e 2 1 4 ¢—100z

= [f data is linearly separable, weights go to infinity

In general, leads to overfitting:
= Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
"

= Add regularization penalty, e.g., L,:

argmin'y " log(1 + exp(—y; 27w)) + Al
1=1

= Practical note about wy;:



