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If you have not already, please take this anonymous poll (also 
linked to on Slack). Thank you! https://tinyurl.com/ybhr5dfn 

Start thinking about projects, dates are up



©2017 Kevin Jamieson 2

Review:  
Cross-Validation
Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 12, 2016



 Use k-fold cross validation

■ Randomly divide training data into k equal parts 
D1,…,Dk 

■ For each i 
Learn classifier fD\Di using data point not in Di  
Estimate error of fD\Di on validation set Di: 

■ k-fold cross validation error is average over data splits: 

■ k-fold cross validation properties: 
Much faster to compute than LOO 
More (pessimistically) biased – using much less data, only n(k-1)/k 
Usually, k = 10
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Recap

■ Given a dataset, begin by splitting into  

■ Model selection: Use k-fold cross-validation on 
TRAIN to train predictor and choose magic 
parameters such as λ 
 

■ Model assessment: Use TEST to assess the 
accuracy of the model you output 
■ Never ever ever ever ever train or choose 

parameters based on the test data
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TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2



Bootstrap: basic idea
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Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

D⇤b = {z⇤b1 , . . . , z⇤bn } i.i.d.⇠ bFZ,n

b✓ = t(D)

✓⇤b = t(D⇤b)

D = {z1, . . . , zn}
i.i.d.⇠ FZ

For b=1,…,B, samples sampled with replacement from D  

FZ

bFZ,60

sup
x

| bF
n

(x)� F (x)| ! 0 as n ! 1

b✓



Applications
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Common applications of the bootstrap: 
• Estimate parameters that escape simple analysis like the variance or median of an 

estimate 
• Confidence intervals 
• Estimates of error for a particular example:  

b✓D ✓⇤b for b = 1, . . . , 10 95% confidence interval

Figures from Hastie et al



Takeaways
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Advantages: 
• Bootstrap is very generally applicable. Build a confidence interval 

around anything 
• Very simple to use 
• Appears to give meaningful results even when the amount of data is very 

small 
• Very strong asymptotic theory (as num. examples goes to infinity) 

Disadvantages 
• Very few meaningful finite-sample guarantees  
• Potentially computationally intensive 
• Reliability relies on test statistic and rate of convergence of empirical 

CDF to true CDF, which is unknown 
• Poor performance on “extreme statistics”  (e.g., the max)

Not perfect, but better than nothing.



Recap

■ Learning is… 
Collect some data 
■ E.g., housing info and sale price 

Randomly split dataset into TRAIN, VAL, and TEST 
■ E.g., 80%, 10%, and 10%, respectively 

Choose a hypothesis class or model 
■ E.g., linear with non-linear transformations 

Choose a loss function 
■ E.g., least squares with ridge regression penalty on TRAIN 

Choose an optimization procedure 
■ E.g., set derivative to zero to obtain estimator, cross-validation on 

VAL to pick num. features and amount of regularization 
Justifying the accuracy of the estimate 
■ E.g., report TEST error with Bootstrap confidence interval
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Simple Variable Selection 
LASSO: Sparse Regression

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 11, 2016



Sparsity
■ Vector w is sparse, if many entries are zero 

■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

10©2017 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � x

T
i w

�2



Sparsity
■ Vector w is sparse, if many entries are zero 

■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

Interpretability:  What are the  
relevant dimension to make a  
prediction? 
■ E.g., what are the parts of the  

brain associated with particular  
words? 
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■ How do we find “best” 
subset among all possible?



Greedy model selection algorithm

■ Pick a dictionary of features 
e.g., cosines of random inner products 

■ Greedy heuristic: 
Start from empty (or simple) set of features F0 = ∅ 
Run learning algorithm for current set of features Ft 
■ Obtain weights for these features 

Select next best feature hi(x)* 

■ e.g., hj(x) that results in lowest training error learner when 
using Ft + {hj(x)*} 

Ft+1 ! Ft + {hi(x)*} 
Recurse
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Greedy model selection

■ Applicable in many other settings: 
Considered later in the course: 
■ Logistic regression: Selecting features (basis functions) 
■ Naïve Bayes: Selecting (independent) features P(Xi|Y) 
■ Decision trees: Selecting leaves to expand 

■ Only a heuristic! 
Finding the best set of k features is computationally 
intractable! 
Sometimes you can prove something strong about it… 
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 When do we stop???

■ Greedy heuristic: 
… 
Select next best feature Xi

* 
■ E.g. hj(x) that results in lowest training error 

learner when using Ft + {hj(x)*} 

Recurse When do you stop???
■ When training error is low enough? 
■ When test set error is low enough? 
■ Using cross validation?
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Is there a more principled approach?



Recall Ridge Regression
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■ Ridge Regression objective: 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Ridge vs. Lasso Regression
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■ Ridge Regression objective: 
 
 
 
 
 
 

■ Lasso Ridge objective: 
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Penalized Least Squares
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Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1



Penalized Least Squares
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Penalized Least Squares
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Optimizing the LASSO Objective
■ LASSO solution:
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Optimizing the LASSO Objective
■ LASSO solution:
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So as usual, preprocess to make sure that
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so we don’t have to worry about an o↵set.
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How do we solve this?



Coordinate Descent
■ Given a function, we want to find minimum 

■ Often, it is easy to find minimum along a single coordinate: 

■ How do we pick next coordinate? 

■ Super useful approach for *many* problems 
Converges to optimum in some cases, such as LASSO
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Optimizing LASSO Objective  
One Coordinate at a Time

25©2017 Kevin Jamieson

=
nX

i=1

 
yi �

dX

k=1

xi,k wk

!2

+ �

dX

k=1

|wk|
nX

i=1

�
yi � x

T
i w

�2
+ �||w||1

=
nX

i=1

0

@
⇣
yi �

X

k 6=j

xi,k wk

⌘
� xi,j wj

1

A
2

+ �

X

k 6=j

|wk|+ �|wj |

bwj = argmin
wj

nX

i=1

⇣
r

(j)
i � xi,j wj

⌘2
+ �|wj |

Equivalently:



x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x
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2 ||y � x||22 8x, y
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f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

Convex Functions

■ Equivalent definitions of convexity: 
 
 
 
 
 
 
 
 

■ Gradients lower bound convex functions and are unique at x iff 
function differentiable at x 

■ Subgradients generalize gradients to non-differentiable points: 
Any supporting hyperplane at x that lower bounds entire function
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g is a subgradient at x if f(y) � f(x) + g

T (y � x)



Taking the Subgradient

■ Convex function is minimized at w if 0 is a sub-gradient at w. 
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Setting Subgradient to 0
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Soft Thresholding 
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From  
Kevin Murphy 
textbook
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Coordinate Descent for LASSO  
(aka Shooting Algorithm)

■ Repeat until convergence 
Pick a coordinate l at (random or sequentially) 
■ Set: 

■ Where:  

For convergence rates, see Shalev-Shwartz and Tewari 2009 
■ Other common technique = LARS 

Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path

■ Typical approach: select λ using cross validation

31

From  
Kevin Murphy 
textbook
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Now: LASSO Coefficient Path 
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From  
Kevin Murphy 
textbook
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What you need to know

■ Variable Selection: find a sparse solution to learning 
problem 

■ L1 regularization is one way to do variable selection 
Applies beyond regression 
Hundreds of other approaches out there 

■ LASSO objective non-differentiable, but convex ➔ Use 
subgradient 

■ No closed-form solution for minimization ➔ Use 
coordinate descent 

■ Shooting algorithm is simple approach for solving LASSO
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Classification 
Logistic Regression

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 12, 2016
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THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS VALUE GIVEN 
SOME INPUTS

35
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Weather prediction revisted

36

Temperature 
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Reading Your Brain, Simple Example

AnimalPerson

Pairwise classification accuracy: 85%
[Mitchell et al.]
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Classification

■ Learn: f:X —>Y 
X – features 
Y – target classes 

■ Conditional probability: P(Y|X) 

■ Suppose you know P(Y|X) exactly, how should 
you classify? 

Bayes optimal classifier: 

■ How do we estimate P(Y|X)?
38
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Link Functions

■ Estimating P(Y|X): Why not use standard linear 
regression? 

■ Combining regression and probability? 
Need a mapping from real values to [0,1] 
A link function!

39
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Logistic Regression
Logistic 
function 
(or Sigmoid):

■ Learn P(Y|X) directly 
Assume a particular functional form for link 
function 
Sigmoid applied to a linear function of the input 
features:

Z

Features can be discrete or continuous!
40
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Understanding the sigmoid
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Very convenient!

implies

42
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Very convenient!

implies

43

0

1

implies

0

1

implies

linear 
classification 

rule!

0

1



©Kevin Jamieson 2017

Logistic Regression –  
a Linear classifier
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

45

P (Y = 1|x,w) = exp(w

T
x)

1 + exp(w

T
x)

P (Y = �1|x,w) = 1

1 + exp(w

T
x)

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

■ This is equivalent to:

■ So we can compute the maximum likelihood estimator:

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)



©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:
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Logistic Loss: `i(w) = log(1 + exp(�yi x
T
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Squared error Loss: `i(w) = (yi � x

T
i w)

2 (MLE for Gaussian noise)
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:
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T
i w))= J(w)

What does J(w) look like? Is it convex?
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:
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{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1
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log(1 + exp(�yi x
T
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Good news: J(w) is convex function of w, no local optima problems

Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize (next time)
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Linear Separability

= argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w)) When is this loss small?
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Large parameters → Overfitting

■ If data is linearly separable, weights go to infinity 

In general, leads to overfitting: 
■ Penalizing high weights can prevent overfitting…
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Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L2: 

■ Practical note about w0:

53
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