We’re trying to plan future ML course offerings, and I would like some feedback on HW0. Please take this anonymous poll (also linked to on Slack). Thank you! https://tinyurl.com/ybhr5dfn

We have a Slack channel.
Whether you are registered or not, please join: https://tinyurl.com/y97uha42

\(\theta \) is uniform on \([0, \theta]\) for unknown \(\theta \). Observe \(U_1, \ldots, U_n \).

1) What is \(\hat{\theta}_{\text{MLE}} \)?

2) Suppose given a prior \(P(\theta) = \begin{cases} \frac{1}{\theta^2} & 0 < \theta < 1 \\ 0 & \text{otherwise} \end{cases} \)
Linear Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

Oct 5, 2017
given past sales data on zillow.com, predict:

\[y = \text{House sale price from} \]
\[x = \{ \# \text{ sq. ft., zip code, date of sale, etc.} \} \]

Training Data:
\[\{(x_i, y_i)\}_{i=1}^n \]

\[x_i \in \mathbb{R}^d \]
\[y_i \in \mathbb{R} \]
The regression problem

Given past sales data on zillow.com, predict:

\[y = \text{House sale price} \text{ from } \]
\[x = \{ \text{# sq. ft., zip code, date of sale, etc.} \} \]

Training Data:
\[\{(x_i, y_i)\}_{i=1}^{n} \]

Hypothesis: linear
\[y_i \approx x_i^T w \]

Loss: least squares
\[\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \]
The regression problem in matrix notation

\[\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 \]

\[= \arg \min_w (y - Xw)^T (y - Xw) \]

\[y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \]
The regression problem in matrix notation

\[
\hat{w}_{LS} = \arg \min_{\mathbf{w}} \| \mathbf{y} - \mathbf{Xw} \|^2_2 \\
= \arg \min_{\mathbf{w}} (\mathbf{y} - \mathbf{Xw})^T (\mathbf{y} - \mathbf{Xw})
\]
The regression problem in matrix notation

\[\hat{w}_{LS} = \arg \min_w ||y - Xw||^2_2 \]
\[= (X^T X)^{-1} X^T y \]

What about an offset?

\[\hat{w}_{LS}, \hat{b}_{LS} = \arg \min_{w, b} \sum_{i=1}^n (y_i - (x_i^T w + b))^2 \]
\[= \arg \min_{w, b} ||y - (Xw + 1b)||^2_2 \]
Dealing with an offset

\[\mathbb{1} = n = \sum_{i=1}^{n} y_i^2 \]

\[\nabla f(x,y,z) = \left[\frac{\partial f(x,y,z)}{\partial w}, \frac{\partial f(x,y,z)}{\partial b} \right] = \arg \min_{w,b} \|y - (Xw + 1b)\|_2^2 \]

\[X = \begin{bmatrix} x_1^T \\ x_2^T \end{bmatrix} \]

\[\nabla_b c = 0 = -1^T(y - (Xw - 1b)) = -1^Ty + 1^TXw + 1^T1b \]

\[b = \frac{1}{n}(1^Ty - 1^TXw) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^Tw) \]
Dealing with an offset

\[\hat{w}_{LS}, \hat{b}_{LS} = \arg \min_{w,b} \| y - (Xw + 1b) \|^2_2 \]

\[X^T X \hat{w}_{LS} + \hat{b}_{LS} X^T 1 = X^T y \]
\[1^T X \hat{w}_{LS} + \hat{b}_{LS} 1^T 1 = 1^T y \]

If \(X^T 1 = 0 \) (i.e., if each feature is mean-zero) then

\[\hat{w}_{LS} = (X^T X)^{-1} X^T Y \]
\[\hat{b}_{LS} = \frac{1}{n} \sum_{i=1}^{n} y_i \]
The regression problem in matrix notation

\[\hat{w}_{LS} = \arg \min_w \| y - Xw \|^2_2 \]
\[= (X^T X)^{-1} X^T y \]

But why least squares?

Consider \(y_i = x_i^T w + \epsilon_i \) where \(\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2) \)

\[
P(y|x, w, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(- \frac{(y - x^T w)^2}{2\sigma^2} \right)
\]
Maximizing log-likelihood

Maximize:

$$\log P(D|w, \sigma) = \log \left(\frac{1}{\sqrt{2\pi\sigma}} \right)^n \prod_{i=1}^{n} e^{-\frac{(y_i - x_i^T w)^2}{2\sigma^2}}$$

$$\hat{w}_{MLE} = (X^T X)^{-1} X^T y$$
MLE is LS under linear model

\[\hat{w}_{LS} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \]

\[\hat{w}_{MLE} = \arg \max_w P(D|w, \sigma) \]

if \(y_i = x_i^T w + \epsilon_i \) and \(\epsilon_i \sim \text{i.i.d. } \mathcal{N}(0, \sigma^2) \)

\[\hat{w}_{LS} = \hat{w}_{MLE} = (X^T X)^{-1} X^T Y \]
The regression problem

Given past sales data on zillow.com, predict:

\[y = \text{House sale price} \quad \text{from} \]
\[x = \{\# \text{ sq. ft., zip code, date of sale, etc.}\} \]

Training Data:
\[\{(x_i, y_i)\}_{i=1}^{n} \]

Hypothesis: linear

\[y_i \approx x_i^T w \]

Loss: least squares

\[\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \]
The regression problem

Given past sales data on zillow.com, predict:

\[y = \text{House sale price} \] from \[x = \{ \# \text{ sq. ft.}, \text{zip code}, \text{date of sale}, \text{etc.} \} \]

Training Data:

\[\{(x_i, y_i)\}_{i=1}^n \]

Hypothesis: linear

\[y_i \approx x_i^T w \]

Loss: least squares

\[\min_w \sum_{i=1}^n (y_i - x_i^T w)^2 \]
The regression problem

Training Data:
\[\{ (x_i, y_i) \}_{i=1}^{n} \]

Hypothesis: linear
\[y_i \approx x_i^T w \]

Loss: least squares
\[\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \]
The regression problem

Training Data:
\[\{ (x_i, y_i) \}_{i=1}^n \]
\[x_i \in \mathbb{R}^d \]
\[y_i \in \mathbb{R} \]

Hypothesis: linear
\[y_i \approx x_i^T w \]

Loss: least squares
\[\min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 \]

Transformed data:
\[h : \mathbb{R}^d \rightarrow \mathbb{R}^p \] maps original features to a rich, possibly high-dimensional space

in \(d=1 \):
\[h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^p \end{bmatrix} \]

for \(d>1 \), generate \(\{ u_j \}_{j=1}^p \subset \mathbb{R}^d \)
\[h_j(x) = \frac{1}{1 + \exp(u_j^T x)} \]
\[h_j(x) = (u_j^T x)^2 \]
\[h_j(x) = \cos(u_j^T x) \]
The regression problem

Training Data:
\[\{(x_i, y_i)\}_{i=1}^n \]
where \(x_i \in \mathbb{R}^d \) and \(y_i \in \mathbb{R} \)

Hypothesis: linear
\[y_i \approx x_i^T w \]

Loss: least squares
\[\min_w \sum_{i=1}^n (y_i - x_i^T w)^2 \]

Transformed data:
\[h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} \]

Hypothesis: linear
\[y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p \]

Loss: least squares
\[\min_w \sum_{i=1}^n (y_i - h(x_i)^T w)^2 \]
The regression problem

Training Data: \(\{ (x_i, y_i) \}_{i=1}^{n} \)

\[x_i \in \mathbb{R}^d \]
\[y_i \in \mathbb{R} \]

Transformed data:

\[h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} \]

Hypothesis: linear

\[y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p \]

Loss: least squares

\[\min_w \sum_{i=1}^{n} (y_i - h(x_i)^T w)^2 \]
The regression problem

Training Data: \[\{(x_i, y_i)\}_{i=1}^n \]
\[x_i \in \mathbb{R}^d \]
\[y_i \in \mathbb{R} \]

Transformed data: \[h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} \]

Hypothesis: linear

\[y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p \]

Loss: least squares

\[\min_w \sum_{i=1}^n (y_i - h(x_i)^T w)^2 \]

Sale Price

Date of sale

small \(p \) fit
The regression problem \(\mathbf{A} \mathbf{x} = \mathbf{b}, \; \mathbf{x} = \mathbf{A}^{-1} \mathbf{b} \)

Training Data:
\[
\{(x_i, y_i)\}_{i=1}^n
\]

\(x_i \in \mathbb{R}^d \)
\(y_i \in \mathbb{R} \)

Transformed data:
\[
h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}
\]

Hypothesis: linear
\[
y_i \approx h(x_i)^T \mathbf{w}
\]

Loss: least squares
\[
\min_{\mathbf{w}} \sum_{i=1}^n (y_i - h(x_i)^T \mathbf{w})^2
\]

What's going on here?
Bias-Variance Tradeoff

Machine Learning – CSE546
Kevin Jamieson
University of Washington

Oct 5, 2017
$P_{XY}(X = x, Y = y)$
Statistical Learning

\[P_{XY}(X = x, Y = y) \]

\[P_{XY}(Y = y | X = x_0) \]

\[P_{XY}(Y = y | X = x_1) \]
Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$

$$P_{XY}(Y = y|X = x_0)$$

$$P_{XY}(Y = y|X = x_1)$$
Statistical Learning

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$
Ideally, we want to find:

\[\eta(x) = \mathbb{E}_{XY} [Y | X = x] \]

But we only have samples:

\((x_i, y_i) \sim i.i.d. \quad P_{XY} \quad \text{for } i = 1, \ldots, n\)
Ideally, we want to find:

\[\eta(x) = \mathbb{E}_{XY} [Y|X = x] \]

But we only have samples:

\[(x_i, y_i) \overset{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \ldots, n \]

and are restricted to a function class (e.g., linear) so we compute:

\[
\hat{f} = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]
Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$

But we only have samples:

$$(x_i, y_i) \overset{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \ldots, n$$

and are restricted to a function class (e.g., linear) so we compute:

$$\hat{f} = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

We care about future predictions: $\mathbb{E}_{XY}[(Y - \hat{f}(X))^2]$
Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$

But we only have samples:

$$(x_i, y_i) \overset{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \ldots, n$$

and are restricted to a function class (e.g., linear) so we compute:

$$\hat{f} = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n}$ results in different \hat{f}
Statistical Learning

Statistical Learning

Each draw $D = \{(x_i, y_i)\}_{i=1}^{n}$ results in different \hat{f}

Ideally, we want to find:
$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$

But we only have samples:
$$(x_i, y_i) \overset{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \ldots, n$$

and are restricted to a function class (e.g., linear) so we compute:
$$\hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$
Bias-Variance Tradeoff

\[\eta(x) = \mathbb{E}_{X,Y}[Y|X = x] \]

\[\hat{f} = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

\[\mathbb{E}_{Y|X=x}[\mathbb{E}_{D}[(Y - \hat{f}_D(x))^2]] = \mathbb{E}_{Y|X=x}[\mathbb{E}_{D}[(Y - \eta(x) + \eta(x) - \hat{f}_D(x))^2]] \]

\[= \mathbb{E}_{Y|X=x}\left[\mathbb{E}_{D}\left[\left(Y - \eta(x) \right)^2 + 2 \left(Y - \eta(x) \right) \left(\eta(x) - \hat{f}_D(x) \right) \right] \right] \]

\[\text{does not depend on } D \]

\[\mathbb{E}_{Y|X=x}[\mathbb{E}_{D}[(Y - \hat{f}_D(x))^2]] \text{ does not depend on } Y \]

\[= \mathbb{E}_{Y|X=x}\left[(Y - \eta(x))^2 \right] + \mathbb{E}_{D}\left[(\eta(x) - \hat{f}_D(x))^2 \right] \]
Bias-Variance Tradeoff

\[\eta(x) = \mathbb{E}_{XY}[Y \mid X = x] \]

\[\hat{f} = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

\[\mathbb{E}_{XY} \left[\mathbb{E}_D[(Y - \hat{f}_D(x))^2] \mid X = x \right] = \mathbb{E}_{XY} \left[\mathbb{E}_D[(Y - \eta(x) + \eta(x) - \hat{f}_D(x))^2] \mid X = x \right] \]

\[= \mathbb{E}_{XY} \left[\mathbb{E}_D[(Y - \eta(x))^2 + 2(Y - \eta(x))(\eta(x) - \hat{f}_D(x)) + (\eta(x) - \hat{f}_D(x))^2] \mid X = x \right] \]

\[= \mathbb{E}_{XY}[(Y - \eta(x))^2 \mid X = x] + \mathbb{E}_D[(\eta(x) - \hat{f}_D(x))^2] \]

irreducible error

Caused by stochastic label noise

learning error

Caused by either using too “simple” of a model or not enough data to learn the model accurately
Bias-Variance Tradeoff

\[\eta(x) = \mathbb{E}_{XY}[Y | X = x] \]

\[\hat{f} = \text{arg min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

\[\mathbb{E}_D[(\eta(x) - \hat{f}_D(x))^2] = \mathbb{E}_D[(\eta(x) - \mathbb{E}_D[\hat{f}_D(x)] + \mathbb{E}_D[\hat{f}_D(x)] - \hat{f}_D(x))^2] \]
Bias-Variance Tradeoff

\[\eta(x) = \mathbb{E}_{XY}[Y \mid X = x] \]

\[\hat{f} = \arg \min_{f \in F} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

\[\mathbb{E}_D[(\eta(x) - \hat{f}_D(x))^2] = \mathbb{E}_D[(\eta(x) - \mathbb{E}_D[\hat{f}_D(x)] + \mathbb{E}_D[\hat{f}_D(x)] - \hat{f}_D(x))^2] \]

\[= \mathbb{E}_D[(\eta(x) - \mathbb{E}_D[\hat{f}_D(x)])^2 + 2(\eta(x) - \mathbb{E}_D[\hat{f}_D(x)])(\mathbb{E}_D[\hat{f}_D(x)] - \hat{f}_D(x))] \]

\[+ (\mathbb{E}_D[\hat{f}_D(x)] - \hat{f}_D(x))^2 \]

\[= (\eta(x) - \mathbb{E}_D[\hat{f}_D(x)])^2 + \mathbb{E}_D[(\mathbb{E}_D[\hat{f}_D(x)] - \hat{f}_D(x))^2] \]

biased squared variance
Bias-Variance Tradeoff

\[E_{XY}[E_D[(Y - \hat{f}_D(x))^2]|X=x] = E_{XY}[(Y - \eta(x))^2|X=x] \]

- irreducible error
- biased squared
- variance

Model too simple \(\rightarrow\) high bias, cannot fit well to data

Model too complex \(\rightarrow\) high variance, small changes in data change learned function a lot
Bias-Variance Tradeoff

\[
\mathbb{E}_{XY} \left[\mathbb{E}_D \left[(Y - \hat{f}_D(x))^2 \right] \mid X = x \right] = \mathbb{E}_{XY} \left[(Y - \eta(x))^2 \right] \mid X = x
\]

irreducible error

\[
+ (\eta(x) - \mathbb{E}_D[\hat{f}_D(x)])^2 + \mathbb{E}_D \left[(\mathbb{E}_D[\hat{f}_D(x)] - \hat{f}_D(x))^2 \right]
\]

biased squared variance

![Graph showing bias, variance, and total error with respect to complexity.](image-url)
Overfitting

Machine Learning – CSE546
Kevin Jamieson
University of Washington

Oct 5, 2017
Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class \rightarrow less bias
 - More complex class \rightarrow more variance
- But in practice??
Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class → less bias
 - More complex class → more variance
- But in practice??
- Before we saw how increasing the feature space can increase the complexity of the learned estimator:

\[
\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \ldots
\]

\[
\hat{f}_D^{(k)} = \arg \min_{f \in \mathcal{F}_k} \frac{1}{|D|} \sum_{(x_i, y_i) \in D} (y_i - f(x_i))^2
\]

Complexity grows as k grows
Training set error as a function of model complexity

\[F_1 \subset F_2 \subset F_3 \subset \ldots \quad D \overset{i.i.d.}{\sim} P_{XY} \]

\[\widehat{f}_{D}^{(k)} = \arg \min_{f \in F_k} \frac{1}{|D|} \sum_{(x_i, y_i) \in D} (y_i - f(x_i))^2 \]

\textbf{TRAIN error:}

\[\frac{1}{|D|} \sum_{(x_i, y_i) \in D} (y_i - \widehat{f}_{D}^{(k)}(x_i))^2 \]

\textbf{TRUE error:}

\[\mathbb{E}_{XY}[\{(Y - \widehat{f}_{D}^{(k)}(X))^2\}] \]
Training set error as a function of model complexity

\[\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \ldots \quad \mathcal{D} \overset{i.i.d.}{\sim} P_{XY} \]

\[\hat{f}_D^{(k)} = \arg \min_{f \in \mathcal{F}_k} \frac{1}{|D|} \sum_{(x_i, y_i) \in D} (y_i - f(x_i))^2 \]

TRAIN error:
\[\frac{1}{|D|} \sum_{(x_i, y_i) \in D} (y_i - \hat{f}_D^{(k)}(x_i))^2 \]

TRUE error:
\[\mathbb{E}_{XY}[(Y - \hat{f}_D^{(k)}(X))^2] \]

TEST error:
\[\mathcal{T} \overset{i.i.d.}{\sim} P_{XY} \]
\[\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \hat{f}_D^{(k)}(x_i))^2 \]

Important: \(\mathcal{D} \cap \mathcal{T} = \emptyset \)

©2017 Kevin Jamieson
Training set error as a function of model complexity

\[F_1 \subset F_2 \subset F_3 \subset \ldots \]

\[\hat{f}_D^{(k)} = \arg \min_{f \in F_k} \frac{1}{|D|} \sum_{(x_i, y_i) \in D} (y_i - f(x_i))^2 \]

TRAIN error:

\[\frac{1}{|D|} \sum_{(x_i, y_i) \in D} (y_i - \hat{f}_D^{(k)}(x_i))^2 \]

TRUE error:

\[\mathbb{E}_{XY}[(Y - \hat{f}_D^{(k)}(X))^2] \]

TEST error:

\[\frac{1}{|T|} \sum_{(x_i, y_i) \in T} (y_i - \hat{f}_D^{(k)}(x_i))^2 \]

Each line is i.i.d. draw of \(D \) or \(T \)

Important: \(D \cap T = \emptyset \)
Training set error as a function of model complexity

\[\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \ldots \quad \mathcal{D} \overset{i.i.d.}{\sim} P_{XY} \]

\[\hat{f}_D^{(k)} = \arg \min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2 \]

TRAIN error is optimistically biased because it is evaluated on the data it trained on. **TEST error** is unbiased only if \(T \) is never used to train the model or even pick the complexity \(k \).

TRAIN error:

\[\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \hat{f}_D^{(k)}(x_i))^2 \]

TRUE error:

\[\mathbb{E}_{XY} [(Y - \hat{f}_D^{(k)}(X))^2] \]

TEST error:

\[\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \hat{f}_D^{(k)}(x_i))^2 \]

Important: \(\mathcal{D} \cap \mathcal{T} = \emptyset \)
Test set error

- Given a dataset, **randomly** split it into two parts:
 - Training data: \mathcal{D}
 - Test data: \mathcal{T}

- Use **training data** to learn predictor
 - e.g.,
 \[
 \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \hat{f}^{(k)}_\mathcal{D}(x_i))^2
 \]
 - use **training data** to pick complexity k (next lecture)

- Use **test data** to report predicted performance
 \[
 \frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \hat{f}^{(k)}_\mathcal{D}(x_i))^2
 \]
Overfitting: a learning algorithm overfits the training data if it outputs a solution w when there exists another solution w' such that:

$$[error_{\text{train}}(w) < error_{\text{train}}(w')] \land [error_{\text{true}}(w') < error_{\text{true}}(w)]$$
How many points do I use for training/testing?

- Very hard question to answer!
 - Too few training points, learned model is bad
 - Too few test points, you never know if you reached a good solution

- Bounds, such as Hoeffding’s inequality can help:
 \[P(|\hat{\theta} - \theta^*| \geq \epsilon) \leq 2e^{-2N\epsilon^2} \]

- More on this later this quarter, but still hard to answer

- Typically:
 - If you have a reasonable amount of data 90/10 splits are common
 - If you have little data, then you need to get fancy (e.g., bootstrapping)
Recap

- Learning is…
 - Collect some data
 - E.g., housing info and sale price
 - Randomly split dataset into TRAIN and TEST
 - E.g., 80% and 20%, respectively
 - Choose a hypothesis class or model
 - E.g., linear
 - Choose a loss function
 - E.g., least squares
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain estimator
 - Justifying the accuracy of the estimate
 - E.g., report TEST error