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We’re trying to plan future ML course offerings, and | would like
some feedback on HWO0. Please take this anonymous poll (also linked to on Slack).

Thank you! hitps://tinyurl.com/ybhr5dfn

We have a Slack channel.
Whether you are registered or not, please join: https://tinyurl.com/y97uha42
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The regression problem
" S

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft., zip code, date of sale, etc.}

Training Data:

o ° .‘ {(wuyz) ?:1

® @
o 0o q ©
O
o o
@ °®
& ® o ¢

# square feet
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The regression problem
" I

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft., zip code, date of sale, etc.}

Training Data: T; € %d
» n Yi €
Y %o {(51317 yZ) =1
o
o ° o7 : Hypothesis: linear
Q
P o o Yi R T w
g o o~ ®
o . ® Loss: Ieast squares
o

° 2
mm E — x w
# square feet
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The regression problem in matrix notation
"

Wrs = arg minz (yZ — x?w)Q
1=1

= arg min(y — Xw)* (y — Xw)

Y1 | _CIIC{_
| Yn_ _xg_




The regression problem in matrix notation

"
Wrs = arg muijn ly — Xwl|3

= argmin(y — Xw)"! (y — Xw)



The regression problem in matrix notation
"

15 — arg min|ly - Xul 3
= (X'X)"' X"y

What about an offset?

n

.~ . 2
wr,s, bLS = arg mlgl (yz — (CE;F’UJ + b))
7=
= argmin ||y — (Xw + 1b>]|§

w,b gy nxd dv) Xl X



' n
Dealing with an offset u:::m/] 2n = 21
" S
o




Dealing with an offset
"

Wrs,brs = arg Tglgl ly — (Xw + 1b)]]3

XTX”L/U\LS L /I;L3XT]_ — XTy
1" X g +br.5171 =17y

If X171 =0 (i.e., if each feature is mean-zero) then

wrs = (XITX)" ' XY

/gLS = %Zyz
i=1



The regression problem in matrix notation
"
wrs = argmin |[y — Xwl|3
= (X'X)"' X"y

But why least squares?

Consider y; =] w+¢€ where ¢ s N(0,0?)

l ( Y- xfw)z

P(y‘CE,w,O') — J.Z_;t-;l E¥p (- > 52 )




Maximizing log-likelihood '™
"
Maximize: . o
QR )wmary (yi—azi w
“4og P(D|w, o) o T He_ 202 j




MLE is LS under linear model
» BN
Wrs = arg minz (yz — :c;rw)Q
=1

@MLE = argmaxP(D[w,a)

it y, = :E,LT'LU +¢ and ¢ hi N (0, 02)

Wrg = WNMLE = (XTX)_lXTY




The regression problem
" I

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft., zip code, date of sale, etc.}

Training Data: T; € %d
» n Yi €
Y %o {(51317 yZ) =1
o
o ° o7 : Hypothesis: linear
Q
P o o Yi R T w
g o o~ ®
o . ® Loss: Ieast squares
o

° 2
mm E — x w
# square feet
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The regression problem 5 7.
" SN

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft., zip code, date of sale, etc.}

Training Data: T EG]%
{(xwyz) i =1 g

Hypothesis: linear

T
Yy ~ T; w

d

Sale Price

Loss: Ieast squares

2
mm E —ZIZ‘ w
date of sale
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The regression problem
" I

Training Data: v € RY Transformed data:

n ; €ER
{(ajzvyz) =1 ’

Hypothesis: linear
~ T
Yi =~ T; W

Loss: Ieast squares

mmE —.CEUJ



The regression problem
" I

Training Data: T EG%
Yi
{(xzv yz) i =1

Hypothesis: linear
~ T
Yi =~ T; W

Loss: Ieast squares

2
mmE —CEUJ

d

Transformed data:

h : R? — R? maps original
features to a rich, possibly
high-dimensional space

_Zl(l‘)_ _3?2_
ind=1: h(z) = 2(33) = x
_hp.(x)_ |7 ]

for d>1, generate {;}j—; C R

1
h. =
i) 1+ exp(uij)

hj(x) = (uj z)?

J

hi(z) = cos(u?x)

16



The regression problem
" I

Training Data: z; € R Transformed data: ()
{(i, yi) bz Mr)=1 .
. . . hp(g;)
Hypothesis: linear -

T Hypothesis: linear

Y T, W -
Y, ~ h(x;)"w weRP
Loss: least'squares

” Loss: least squares

1=1

- _aT)? -
H}$41 Z (y’L Ly 'U]) mlnz (yz — h(xz)Tw)Z

17



The regression problem

" JE—
Training Data: z; € RY Transformed data: D ()]
(s, i) Heq h@)=|
hp(2)

Hypothesis: linear
yi ~ h(z;))'w weR?

Loss: least squares

minz (yi — fL(x7;)TfL11)2
i=1

Sale Price

date of sale



The regression problem

" JE—
Training Data: z; € RY Transformed data: D ()]
(s, i) Heq h@)=|
hp(2)

Hypothesis: linear

Ui N h(xi)Tw w € RP

Sale Price
/7

/ Loss: least squares

minz (yi — fL(x7;)TfL11)2
i=1

date of sale

19



The regression problem 7x=6 x>

" JE—
Training Data: z; € RY Transformed data: D ()]
n y; € R b — ha(x)
(s, i) Heq (@)=
| I ()

Hypothesis: linear
v 8 \ T
N 1\, Y, = h(x;)" w @
Loss: least squares

minz (yi — fL(x7;)TfL11)2
i=1

Sale Price

date of sale
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Statistical Learning
" SN

ny(XZZU,Y:y)




Statistical Learning




Statistical Learning

Pys (K =3V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]

ny(Y - y‘X T iCo)

Pxy (Y = y|X = x1)
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Statistical Learning

Pys (K =3V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]




Statistical Learning

Pys (K =3V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]

But we only have samples:
(in,yi) ’L'Z\.Jd' PXY for ¢ = 1,...,??,
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Statistical Learning

Pys (K =3V =g Ideally, we want to find:
n(z) =Exy[Y|X = z

But we only have samples:
(iEi,yi) ’L'Z\.Jd' PXY for ¢ = 1,...,??,

and are restricted to a
function class (e.g., linear)
SO we compute:

2 e

f=argmin = > (y; — f(z:))?

FEF W

&=
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Statistical Learning

Py (¥ =3V =g Ideally, we want to find:
n(z) =Exy[Y|X = z

But we only have samples:
(CIZ@',yi) z.g\.Jd. PXY for ¢ = 1,...,??,

and are restricted to a
function class (e.g., linear)
SO we compute:

2 g

f=argmin = > (y; — f(z:))?

]:'
X FEF m o

AN

We care about future predictions: Exy [(Y — f(X))?]

©2017 Kevin Jamieson




Statistical Learning

" JEE
Py (¥ =3V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]

But we only have samples:

(xi,yz)ZZdPXY fOI"I:Zl,...,n

> and are restricted to a
function class (e.g., linear)
SO we compute:

2 e

f=argmin— > (y; — f(x:))’

f
X Je nzl

Each draw D = {(z;,y:)}", results in different f
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Statistical Learning

" JE—
Py (¥ =3V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]

But we only have samples:

(xi,yz)ZZdPXY fOI"I:Zl,...,n

and are restricted to a
function class (e.g., linear)
SO we compute:

2 e

f=argmin =) (y; — f(x;))’

F
X e nzl

Each draw D = {(z;,y:)}", results in different f
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Bias-Variance Tradeoff g[/ v £00)°
- S
(@) =Exy[Y|X =a]  F=argmin - > (s f(z)

feF N 4
7=l

Ey|x=En[(Y = /p(2))*]] = By |x=2[En[(Y — n(z) + n(z) — fn(x))’]

-E [Eb[ (1)« 2( bt rm) + (uw lﬂ

Gy -
4’5} n-f - duc nd‘vc‘( 1
Pl S L S By

= — A 2
T E, L(r~20a8] + g [(2(;7-@@3]



Bias-Variance Tradeoff
B
n(z) =Exy[Y|X =2]  F=agmin- 3 (- f()’

FEF W
7=l

Exy Ep[(Y — fo(2))?]|X = 2] = Exy [Ep[(Y — n(z) +n(z) — fo(2))?]| X = ]

AN

=EXY[ED[<Y - n<x>>2 +2(Y —n(x))(n(z) — fo(x))
+(n(z) — fo(x))?]|X = 2]

—Exy[(Y —n(x))*| X = 2] + Ep[(n(z) — fo(2))’

irreducible error learning error
Caused by stochastic =~ Caused by either using too “simple”
label noise of a model or not enough

data to learn the model accurately
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Bias-Variance Tradeoff
BN
n(z) =Exy|Y|X =z = arggcréi]r_;l > (i = f:))”

Ep[(n(z) - fp())’] = Ep[(n(z) — Ep[fp(x)] + Ep[fp(z)] - fo(2))’]




Bias-Variance Tradeoff
B
n(z) =Exy[Y|X =2]  F=agmin- 3 (- f()’

feEF N
7=l

Ep((n(z) - fp())’] = Ep[(n(z) — Ep[fp(x)] + Ep[fp(z)] - fo(2))’]
)

|
=Ep|(n(x) ~ Eo|fo(x)))? + 24— Ealfola))(Ealfotel—Fotr)
+ (Eplfo ()] - folw))? EC3=0

=(n(z) — Ep[fp(x)))* + Ep[(Ep[fn(2)] — fn(x))?]

biased squared variance




Bias-Variance Tradeoff
- _
Exy[Ep[(Y — fo(2))?]|X = 2] = Exy[(Y — n(2))?|X = 2]
irreducible error
+(n(z) — Ep[fp(2)))? + Ep[(Ep[fp(2)] — fp(2))?]

biased squared variance

Model too simple = high bias, cannot fit well to data

Model too complex = high variance, small changes in
data change learned function a lot



Bias-Variance Tradeoff
m _
Exy[Ep[(Y — fo(2))?]|X = 2] = Exy[(Y — n(2))?|X = 2]
irreducible error
+(n(z) — Ep[fp(2)))? + Ep[(Ep[fp(2)] — fp(2))?]

biased squared variance

| complexity R



Overfitting

Machine Learning — CSE546
Kevin Jamieson
University of Washington

Oct 5, 2017



Bias-Variance Tradeoff

" JE
= Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance

= But in practice??



Bias-Variance Tradeoff

* J
= Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance

= But in practice??
= Before we saw how increasing the feature space can
iIncrease the complexity of the learned estimator:

F1 CFoC F3C...
fém — arg min 1 Z (y; — f(z3))?

fere Dl e

Complexity grows as k grows



Training set error as a function of

. model ComEIexitx

FiCF, CFsC... D"E* pPyy TRAIN error:
1 1
) =margmin — Y (- f@)? Y (i fp (@)

D D
JE7 ‘ | (zi,y:) €D ’ | (zi,y;)ED

TRUE error:
Exy[(Y — f5(X))?]




Training set error as a function of

] model ComEIexitx

FiCF, CFsC... D"E* pPyy TRAIN error:

Al()k) = arg min L Z (yi — f(xz))2 ﬁ Z (yi — ]?I(Dk) (%))2

TRUE error:
Exy[(Y — f5(X))?]

TEST error:

1.7.d.
T~ PXY

1 k
Tl ST i £ (@)?
(xi,y:)ET

Important: DNT =0

Complexity (k)



model complexit
.d.
flCFQCFgC... D“ Pxv
Pk _ 1 ()2
D = arg }2% ‘D| Z (yz f(xz))
(z4,y:) €D
f: High Bias Low Bias
Low Varance High Variance
g 1 Each line is i.i.d. draw of D or T
0 5 10 25 30 35

Training set error as a function of

15 20
Complexity (k)

©2017 Kevin Jamieson

Plot from Hastie et al

TRAIN error:

1
o 2 W

(zi,y;) €D

— 5 (@)

TRUE error:
Exy[(Y —

TEST error:
T 7.7.d.

Pxy

> (i

for) (2:))

1
7

Important: DNT =0

42



Training set error as a function of

. model ComEIexitx

FiCF, CFsC... D"E* pPyy TRAIN error:
1
Z (yi — f(xz@ D Z (y; — ]?Z(Dk) (2:))?

(zi,y:)€ED | | (zi,y:)€D

TRUE error:
TRAIN error is optimistically | Exv[(Y — f2)(X))?]
biased because it is evaluated _
on the data it trained on. TEST| TEST error:

— arg min —
®fer |D|

error is unbiased only if T is T "5 Pyy

never used to train the model ! (i — T ()2
— yi — fp (1))

or even pick the complexity k. u (mi%g i

Important: DNT =4

©2017 Kevin Jamieson 43



Test set error
" JE——
= Given a dataset, randomly split it into two parts:
Training data: D
Test data:
= Use training data to learn predictor

ceg, B X - IE)P

(zi,y:) €D
= use training data to pick complexity k (next lecture)

Important: DNT =0

= Use test data to report predicted performance

D DI )
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Overfitting

"
= Overfitting: a learning algorithm overfits the
training data if it outputs a solution w when there
exists another solution w’ such that:

[errorirain(w) < (-fl""'("'train(w,)]/\[(37""0"'17'110(W,) < erroryrye(w)]
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How many points do | use for

] traininﬂ/testina?

Very hard question to answer!

Too few training points, learned model is bad
Too few test points, you never know if you reached a good solution

Bounds, such as Hoeffding’s inequality can help:

P(|0—6%|>¢) < 2e72N€

More on this later this quarter, but still hard to answer

= Typically:

If you have a reasonable amount of data 90/10 splits are common

If you have little data, then you need to get fancy (e.g., bootstrapping)

©2017 Kevin Jamieson 46



Recap

"
= Learningis...
Collect some data
= E.g., housing info and sale price

Randomly split dataset into TRAIN and TEST
= E.g., 80% and 20%, respectively

Choose a hypothesis class or model
- E.g., linear
Choose a loss function
= E.g., least squares
Choose an optimization procedure
= E.g., set derivative to zero to obtain estimator

Justifying the accuracy of the estimate
- E.g., report TEST error

©2017 Kevin Jamieson
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