Linear Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

Oct 5, 2017



The regression problem

Given past sales data on zillow.com

, predict:

y = House sale price from

x ={# sq. ft., zip code, date of sale, etc.}

° ®
® O
o ©q ©
O
o O
@ ®
(cnv ® o ®

# square feet

©2017 Kevin Jamieson

Training Data:

(i, i) fien


http://zillow.com

The regression problem

Given past sales data on zillow.com, predict:

y = House sale price from

x ={# sq. ft., zip code, date of sale, etc.}

®
[

Sale Price

# square feet

©2017 Kevin Jamieson

Training Data: T EE%CZ
{(xzvyz) i =1 g

Hypothesis: linear

~
Yi =~ T; W

Loss: Ieast squares
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The regression problem in matrix notation
" S

Wrs = arg minz (yi — x;-rw)2
1=1

= arg min(y — Xw)? (y — Xw)

w

_yl - _ajtlz—,_
Yn _5’32_




The regression problem in matrix notation
" S
@p.s = arg min ||y — Xuw||3

= arg min(y — Xw)? (y — Xw)



The regression problem in matrix notation
" S

s = argmin ||y — Xuw|[3
= (X'X)"' X"y

What about an offset?

n

- . 2
Wrs,brg = arg min (yi — (] w+b))
Ik
= arg min ||y — (Xw + 1b)]|§

w,b



Dealing with an offset
"

Wrs,brs = argfgigl ly — (Xw + 1b)]|3



Dealing with an offset
"

Wrs,brs = afgfgigl ly — (Xw + 1b)||5

XX g+ brsXT1 =Xy
1" Xws +b6171 =11y

If X?'1 =0 (i.e., if each feature is mean-zero) then

wrs = (X' X)) XY

/b\LS — %Zyz
i=1



The regression problem in matrix notation
"
Wps = argmin |ly — Xuwl|;
_ (XTX)—1XTy
But why least squares?

Consider y; = a:;-rw +¢€; where ¢ S N (0, 02)

P(y|lz,w,0) =



Maximizing log-likelihood

"
Maximize:

e

::

log P(D|w, o) = log( )"

27TO'



MLE is LS under linear model
" BN
Wrg = arg minz (yz — :U;-Fw)Z
1=1

@MLE = argmaXP(D]w,a)

if y;=2iw+e and ¢ S N(0,0%)

Urs = opne = (XIX)"IXTY




The regression problem

Given past sales data on zillow.com, predict:

y = House sale price from

x ={# sq. ft., zip code, date of sale, etc.}
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Training Data: T EE%CZ
{(xzvyz) i =1 g

Hypothesis: linear
o .T
Yi ~ T; W

Loss: Ieast squares
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The regression problem
" I

Given past sales data on zillow.com, predict:
y = House sale price from
x ={# sq. ft., zip code, date of sale, etc.}

Training Data: T EE%CZ
{(xzvyz) i =1 g

Hypothesis: linear

~
Yi =~ T; W

Sale Price

Loss: Ieast squares

2
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date of sale
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The regression problem
" I

Training Data: v RY Transformed data:

n ;i € R
{(xuyz) =1 ’

Hypothesis: linear
_.T
Yi =~ T; W

Loss: Ieast squares

mmE —J:w



The regression problem
" I

Training Data: T Ee%id
{(xuyz) i =1 "

Hypothesis: linear
_.T
Yi =~ T; W

Loss: Ieast squares

2
HllIlE —a:w

Transformed data:

h : R? — RP maps original
features to a rich, possibly
high-dimensional space

_Zl(ﬂﬁ)_ _902_
ind=1: h(x) = 2(@ = :13
_hp.(x)_ | 2P

for d>1, generate {u; }le c R4

1
hi(x) =
(@) 1+ exp(u; x)

hj(z) = (uj x)?
hi(z) = COS(ZL?ZE)
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The regression problem
" S

Training Data: = %d Transformed data: Zlg”’g
Y € a(x
{(xuyz) - —1 h(z) = 5
h
Hypothesis: linear p(2)
T Hypothesis: linear
Yi = T, W

~ avA p
| o/ Y; R h(azz) w weER
Loss: least'squares

2 Loss: Ieast squares

. S 2
i Z (yz B QL;Fw) mmz — h(x;) )2

1=1
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The regression problem
" S

Training Data: x; € R Transformed data: ha ()]
(i, yi) Fiea M=
hp ()

Hypothesis: linear
yi ~ h(z;))Tw weR?

Loss: least squares

minz (yi — h(:z:7;)TUJ)2
i=1

Sale Price

date of sale



The regression problem
" S

Training Data: x; € R Transformed data: ha ()]
(i, yi) Fiea M=
hp ()

Hypothesis: linear
yi ~ h(z;))Tw weR?

: Loss: least squares

minz (yi — h(:z:7;)TUJ)2
i=1

Sale Price
P 4

date of sale

18



The regression problem
" S

Training Data: x; € R

; € R

Sale Price

Transformed data: hy(2)]
h

h(x) = 2(:13)

hp(w)

Hypothesis: linear
yi ~ h(z;))Tw weR?

Loss: least squares

—4 miﬂz (yz — h(iUi)Tw)Q
i=1

date of sale
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Statistical Learning
"

ny(X:.CC,Y:y)




Statistical Learning
"

[ Pxy(Y =y|X = m1)
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Statistical Learning

Pyy (X =3,V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]

ny(Y — y‘X — ZE())

It Pxy(Y = y|X = 21)
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Statistical Learning

Pyy (X =3,V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]




Statistical Learning

Pyy (X =3,V =g Ideally, we want to find:
n(z) =Exy|Y|X = z]

But we only have samples:
(@, 05) k2 Py Wri=1,....m
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Statistical Learning

" JE———
o
Pyy (X =3,V =g Ideally, we want to find:
n(zr) =Exy|Y|X = 7]

But we only have samples:
(@, 05) e Py fori=1,....m
and are restricted to a
function class (e.g., linear)
SO we compute:

2 il

f = arg min — Z(yz = f(wz))2

JFEF W

o=t
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Statistical Learning

" JEE——
o
Pyy (X =3,V =g Ideally, we want to find:
n(z) =Exy|Y|X =z

But we only have samples:
(@, 05) e Py fori=1,....m

and are restricted to a
function class (e.g., linear)
SO we compute:

2 mr
F=argmin— 3y — f(2:))?

f
% JEeF W o

AN

We care about future predictions: Exy [(Y — f(X))?]
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Statistical Learning

"
Pyy (X =3,V =g Ideally, we want to find:
n(z) =Exy|Y|X = 2]

But we only have samples:

(xi,yz)“d Py fori=1,....m

> and are restricted to a
function class (e.g., linear)
SO we compute:

2 il
f=argmin— Y (y; - f(z:))?

f
% JEF N o

Each draw D = {(x;,y;) } ', results in different f
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Statistical Learning

"
Pyy (X =3,V =g Ideally, we want to find:
n(z) =Exy|Y|X = 2]

But we only have samples:

(:c@-,yz)“d Py fori=1,....m

and are restricted to a
function class (e.g., linear)
SO we compute:

2 il
f=argmin— Y (y; - f(z:))?

f
% JEF N o

Each draw D = {(x;,y;) } ', results in different f
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Bias-Variance Tradeoff
"
77($) = Exy[Y‘X = CL‘] j?z arg min £ Z(yz — f(x3))?

HEF WS

=i

Ey|x=Ep[(Y = fp(2))*]] = Ey|x—[Ep[(Y — n(=) + n(z) — fp(x))’]



Bias-Variance Tradeoff
" A

1

=Exy[Y|X = 2] f=argmin— "(y; — f(2:))’

JEF W

=i

AN

Exy [Ep[(Y — fp(2))*]| X = 2] = Exy[Ep[(Y — n(z) + (=) — fp(z))]| X = 2]

—Exy[E (v — 77( )2 +2(Y —n(x))(n(x) — fp(z))
+ (n(x) — fp(x))4]| X = 2]
=Exy[(Y —n(x }X = 1] + Ep[(n(z) — fp(2))?]

irreducible error learning error
Caused by stochastic =~ Caused by either using too “simple”
label noise of a model or not enough

data to learn the model accurately



Bias-Variance Tradeoff
"
n(z) =Exy|Y|X = z Ji= arg?gg%Z(yi = i)



Bias-Variance Tradeoff
" A
77($) = Exy[Y‘X = CE] j?— arg min £ Z(yz — f(x3))?

JEF W

=i

Ep|(n(z) — fo(2))’] = Ep[(n(x) — Ep|fp(2)] + Ep[fp(2)] — fp(w))?]
]

|
=Ep[(n(x) — ED[fD(l’)) 2(n(x) — Ep[fp(2)))(Ep[fp(z)] - fp(z))
+ (Ep[fo(z)] — fo(x))?]

=(n(z) — Ep[fp(2)))* + Ep[(Ep|fp(2)] - fo(x))’]

biased squared variance




Bias-Variance Tradeoff
- _
Exy Ep[(Y — fo(2)?]|X = 2] = Exy[(Y — n(2))?|X = ]
irreducible error
+(n(z) — Ep|fp(2)])? + Ep[(Ep[fp(x)] — fp(z))]

biased squared variance

Model too simple = high bias, cannot fit well to data

Model too complex = high variance, small changes in
data change learned function a lot



Bias-Variance Tradeoff

Exy [Ep[(Y — fo(2))’]| X = 2] = Exy[(Y —n(2))*|X = ]

irreducible error

~ f(2))]

+(n(x) — Ep[fp(2)])* + Ep[(Ep[fp(z)
biased squared variance

complexity
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Bias-Variance Tradeoff

" J———
= Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance

= But in practice??



Bias-Variance Tradeoff
" JE—

= Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance

= But in practice??

= Before we saw how increasing the feature space can

iIncrease the complexity of the learned estimator:

-Fl CF2CF3C
1
5’ :arg]%%ﬁ Z (i = f(@))”

Complexity grows as k grows



Training set error as a function of

] model Comﬁlexitx

FiCFaCF3C... D" Pyy  TRAIN error:
1 1
) =argmin — > (y; — f(:)) ] N7 (g — o (@)

TRUE error:
Exy[(Y — f3)(X))?]



Training set error as a function of

. model Comﬁlexitx

FiCFaCFsC... D5 Pyy TRAIN error:

) _ are min — S (v — fl@))? ‘%‘ N7 (g — o (@)

JE7 ‘D| (zi,y:)€ED (x:,y:)€D

TRUE error:
Exy[(Y — Al(pk)(X))z]

TEST error:

1.2.d.
T g PXY

% N7 (g — ) (@)

(zi,y:)ET

Important: DN7T = ()

Complexity (k)



Training set error as a function of

. model Comﬁlexitx

FICFo CF3C... D"5* pyy  TRAIN error:
1 1
) =argmin = > (4 — f(x))? Bl S - Iy (@)

feFu |D|
(@i,y:)€D (zi,y:)ED
:«g High Bias Low Bias |
oty High Variance TRUE error:
o k
— Exy[(Y — fp (X))
) TEST error:
= d.
T "5 Pyxy
S 1 .
m Z (yi — f )( z))
s (zi,y:)ET
g | Each line is i.i.d. draw of D or 7 | Important: DN T = ()

Com pleXIty (k) Plot from Hastie et al
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Training set error as a function of

. model Comﬁlexitx

FiCFaCFsC... D5 Pyy TRAIN error:
k .1 1 (k)
) —agmin o5 D - f@)® o 2L = Jp (@)

(@i,y:)€D (zi,y:)ED
TRUE error:
TRAIN error is optimistically | Exv[(Y — f27(X))?
biased because it is evaluated _
on the data it trained on. TEST| TEST error:

error is unbiased only if T is T RS Pxvy

never used to train the model 1 ( (k) >
— E (v — fp ()

or even pick the complexity k. Tl oS er P

Important: DNT = ()
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Test set error
" A
= Given a dataset, randomly split it into two parts:
Training data: D
Test data: 7/
= Use training data to learn predictor

= e.g., |%| D (i — I (2:))?

(zi,yi)€D
= use training data to pick complexity k (next lecture)

Important: DN7T = ()

= Use test data to report predicted performance

1 k
T N (i — ) (@)
(xi,y:)ET



Overfitting

" JEEE—
= Overfitting: a learning algorithm overfits the
training data if it outputs a solution w when there
exists another solution w’ such that:

lerrorirain(W) < C"""O'rtr(zin(W,)]/\[‘57""07'17“11(‘.(W,) < errortrye(W)]

©2017 Kevin Jamieson
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How many points do | use for

traininﬂ/testinﬂ?

Very hard question to answer!
Too few training points, learned model is bad
Too few test points, you never know if you reached a good solution

Bounds, such as Hoeffding’s inequality can help:
- 2
P(|0-0"|>€) < 2727

More on this later this quarter, but still hard to answer
Typically:

If you have a reasonable amount of data 90/10 splits are common

If you have little data, then you need to get fancy (e.g., bootstrapping)
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Recap
" A

= Learningis...

Collect some data
= E.g., housing info and sale price

Randomly split dataset into TRAIN and TEST
= E.g., 80% and 20%, respectively

Choose a hypothesis class or model
- E.g., linear
Choose a loss function
- E.g., least squares
Choose an optimization procedure
= E.g., set derivative to zero to obtain estimator

Justifying the accuracy of the estimate
= E.g., report TEST error
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