Bayesian Methods

Machine Learning – CSE546 Kevin Jamieson University of Washington

September 28, 2017

MLE Recap - coin flips

- Data: sequence D= (HHTHT...), k heads out of n flips
- **Hypothesis:** $P(Heads) = \theta$, $P(Tails) = 1-\theta$

$$P(\mathcal{D}|\theta) = \theta^k (1 - \theta)^{n-k}$$

 Maximum likelihood estimation (MLE): Choose θ that maximizes the probability of observed data:

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(\mathcal{D}|\theta)$$

$$= \arg \max_{\theta} \log P(\mathcal{D}|\theta)$$

MLE Recap - Gaussians

$$\log P(\mathcal{D}|\mu,\sigma) = -n\log(\sigma\sqrt{2\pi}) - \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu}_{MLE})^2$$

MLE for the variance of a Gaussian is biased

$$\mathbb{E}[\widehat{\sigma^2}_{MLE}] \neq \sigma^2$$

Unbiased variance estimator:

$$\widehat{\sigma^2}_{unbiased} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \widehat{\mu}_{MLE})^2$$

MLE Recap

- Learning is...
 - Collect some data
 - E.g., coin flips
 - Choose a hypothesis class or model
 - E.g., binomial
 - Choose a loss function
 - E.g., data likelihood
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain MLE
 - Justifying the accuracy of the estimate
 - E.g., Hoeffding's inequality

What about prior

- Billionaire: Wait, I know that the coin is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...

Bayesian vs Frequentist

- Data: \mathcal{D} Estimator: $\widehat{\theta} = t(\mathcal{D})$ loss: $\ell(t(\mathcal{D}), \theta)$
- Frequentists treat unknown θ as fixed and the data D as random.

 Bayesian treat the data D as fixed and the unknown θ as random

Bayesian Learning

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Bayesian Learning for Coins

Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
 - Represent expert knowledge
- Conjugate priors:
 - Closed-form representation of posterior
 - □ For Binomial, conjugate prior is Beta distribution

Beta prior distribution – $P(\theta)$

$$P(\theta) = rac{ heta^{eta_H - 1} (1 - heta)^{eta_T - 1}}{B(eta_H, eta_T)} \sim Beta(eta_H, eta_T)$$
 Mean:
$$\frac{Beta(2,3)}{Beta(2,2)} \sim Beta(2,3)$$

Likelihood function:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• Posterior:
$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Posterior distribution

• Data: α_H heads and α_T tails

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Using Bayesian posterior

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

- Bayesian inference:
 - No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

Integral is often hard to compute

MAP: Maximum a posteriori approximation

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\widehat{\theta})$$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) =$$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\beta_H + \alpha_H - 1}{\beta_H + \beta_T + \alpha_H + \alpha_T - 2}$$

- Beta prior equivalent to extra coin flips
- As N → 1, prior is "forgotten"
- But, for small sample size, prior is important!

Recap for Bayesian learning

- Learning is...
 - Collect some data
 - E.g., coin flips
 - Choose a hypothesis class or model
 - E.g., binomial and prior based on expert knowledge
 - Choose a loss function
 - E.g., parameter posterior likelihood
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain MAP
 - Justifying the accuracy of the estimate
 - E.g., If the model is correct, you are doing best possible

Recap for Bayesian learning

Bayesians are optimists:

- "If we model it correctly, we output most likely answer"
- Assumes one can accurately model:
 - Observations and link to unknown parameter heta: p(x| heta)
 - Distribution, structure of unknown heta: p(heta)

Frequentist are pessimists:

- "All models are wrong, prove to me your estimate is good"
- Makes very few assumptions, e.g. $\mathbb{E}[X^2] < \infty$ and constructs an estimator (e.g., median of means of disjoint subsets of data)
- Prove guarantee $\mathbb{E}[(\theta \widehat{\theta})^2] \le \epsilon$ under hypothetical true θ 's

Linear Regression

Machine Learning – CSE546 Kevin Jamieson University of Washington

Oct 3, 2017

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data:

Training Data:
$$x_i \in \mathbb{R}^d$$
 $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

$$\mathbf{y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix} \quad \mathbf{X} = egin{bmatrix} x_1^T \ dots \ x_n^T \end{bmatrix}$$

What about an offset?

$$\widehat{w}_{LS}, \widehat{b}_{LS} = \arg\min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2$$
$$= \arg\min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2$$

Dealing with an offset

$$\widehat{w}_{LS}, \widehat{b}_{LS} = \arg\min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2$$

Dealing with an offset

$$\mathbf{X}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{X}^T \mathbf{1} = \mathbf{X}^T \mathbf{y}$$

 $\mathbf{1}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{1}^T \mathbf{1} = \mathbf{1}^T \mathbf{y}$

If $\mathbf{X}^T \mathbf{1} = 0$ (i.e., if each feature is mean-zero) then

$$\widehat{w}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$\widehat{b}_{LS} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

But why least squares?

Consider
$$y_i = x_i^T w + \epsilon_i$$
 where $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

$$P(y|x, w, \sigma) =$$

Maximizing log-likelihood

Maximize:

$$\log P(\mathcal{D}|w,\sigma) = \log(\frac{1}{\sqrt{2\pi}\sigma})^n \prod_{i=1}^n e^{-\frac{(y_i - x_i^T w)^2}{2\sigma^2}}$$

MLE is LS under linear model

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

$$\widehat{w}_{MLE} = \arg \max_{w} P(\mathcal{D}|w, \sigma)$$
if $y_i = x_i^T w + \epsilon_i$ and $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

$$\widehat{w}_{LS} = \widehat{w}_{MLE} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data:

$$\{(x_i, y_i)\}_{i=1}^n$$

 $x_i \in \mathbb{R}^d$ $y_i \in \mathbb{R}$

Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data: $x_i \in \mathbb{R}^d$ $y_i \in \mathbb{R}$

$$\{(x_i, y_i)\}_{i=1}^n$$

Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Training Data: $\{(x_i, y_i)\}_{i=1}^n$

$$x_i \in \mathbb{R}^d$$
$$y_i \in \mathbb{R}$$

Transformed data:

Hypothesis: linear

$$y_i \approx x_i^T w$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Transformed data:

 $h: \mathbb{R}^d \to \mathbb{R}^p$ maps original features to a rich, possibly high-dimensional space

in d=1:
$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}$$

for d>1, generate
$$\{u_j\}_{j=1}^p\subset\mathbb{R}^d$$

$$h_j(x)=\frac{1}{1+\exp(u_j^Tx)}$$

$$h_j(x)=(u_j^Tx)^2$$

$$h_j(x)=\cos(u_j^Tx)$$

Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

What's going on here?