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MLE Recap - coin flips
" J———

= Data: sequence D= (HHTHT...), k heads out of n flips
= Hypothesis: P(Heads) = 6, P(Tails) =1-0

P(D|#) = 0%(1 — )" "

= Maximum likelihood estimation (MLE): Choose 6 that
maximizes the probability of observed data:

arg max P(D|6)

OrvLE k

OvieE =

= arg max log P(D|0)
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MLE Recap - Gaussians
" J———

= MLE: "
log P(D|p,0) = —nlog(ov2 Z
1=1
1 n o 1 mn
A~ L i 2
HMLE = — ZCI% O°MLE = " 5 (zi — mLE)
=1 i=1
= MLE for the variance of a Gaussian is biased
5 2
Elo?ypre] # o0
Unbiased variance estimator:
) I < -~ 2
O~ unbiased — — 5 ( i — ,UMLE)

n—1
1=1
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MLE Recap
" J———

= Learningis...
Collect some data
= E.g., coin flips
Choose a hypothesis class or model
- E.g., binomial
Choose a loss function
= E.g., data likelihood

Choose an optimization procedure
= E.g., set derivative to zero to obtain MLE

Justifying the accuracy of the estimate
» E.g., Hoeffding’s inequality
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What about prior

" A
= Billionaire: Wait, | know that the coin is “close” to
50-50. What can you do for me now?

= You say: | can learn it the Bayesian way...



Bayesian vs Frequentist
" J———
» Data: D Estimator: 0 = t(D) loss: £(t(D),0)
= Frequentists treat unknown 9 as fixed and the
data D as random.

= Bayesian treat the data D as fixed and the
unknown 6 as random



Bayesian Learning

" J——
= Use Bayes rule:

oDy = P@IOPO)

P(D)
= Or equivalently:

P(6|D) x P(D|0)P(6)



Bayesian Learning for Coins
" I
P(0| D) < P(D|6)P(H)

= Likelihood function is simply Binomial:
P(D|60) =0%H(1 —6)T

= What about prior?
Represent expert knowledge
= Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution



Beta prior distribution — P(0)

"
9,‘3].[—1(1 . 9),37‘—1
B(Bu, Br)

Beta(2,2)

Mean:

~ Beta(By, Br) Mode:

Beta(2,3)

P(0) =

Beta(1,1)

= Likelihood function: P(D|0) = 0“H(1 — )T
= Posterior: PO |D) x P(D|6)P(6)



Posterior distribution
" A

= Prior: Beta(By, Br)
« Data: a heads and o tails

= Posterior distribution:

P(0 | D) ~ Beta(By + oy, Br + aT)

Beta(1

)

Beta(2

2)

Beta(2,

3)

Beta(20,30

S —— .

)

P |




Beta(30,20)

Using Bayesian posterior | /\
" N

» Posterior distribution: e
P(0 | D) ~ Beta(By + oy, Br + ar)

= Bayesian inference:
No longer single parameter:

1
BIf(0)) = [ f(O)P(9| D)dg

Integral is often hard to compute



approximation

MAP: Maximum a posteriori : 7

P(9 | D) ~ Beta(ﬁH + ap, Br + aT) oz g es o 1

1
BIf ()] = [ f(O)P(9| D)dg

= As more data is observed, Beta is more certain

= MAP: use most likely parameter:

0 = arg max PO | D) E[f(0)] ~ f(0)



Beta(30,20)

MAP for Beta distribution
" S

ameter value

pBu+an—1(1 _ g)Br+ar—1 "
( ) ~ Beta(By+ay, Br+ar)

B(By + ay,Br + ar)

P(0| D) =

= MAP: use most likely parameter:

) = arg max P(0 | D) =



Beta(30,20)

MAP for Beta distribution _
" E—

ameter value

oBut+an—1(1 — g)Brtar—1
( ) ~ Beta(By+apy, Br+ar)

PO D)= B(By + ay,Br + ap)

= MAP: use most likely parameter:

ﬁHT—OéH—l
B+ Br+ag+ar —2

0 = arg mgaxP(e | D) =

= Beta prior equivalent to extra coin flips
= As N — 1, prior is “forgotten”
= But, for small sample size, prior is important!
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Recap for Bayesian learning
" JE—

= Learningis...
Collect some data
= E.g., coin flips
Choose a hypothesis class or model
= E.g., binomial and prior based on expert knowledge

Choose a loss function
= E.g., parameter posterior likelihood

Choose an optimization procedure
= E.g., set derivative to zero to obtain MAP

Justifying the accuracy of the estimate
» E.g., If the model is correct, you are doing best possible
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Recap for Bayesian learning
" JE—

Bayesians are optimists:
* “If we model it correctly, we output most likely answer”
« Assumes one can accurately model:
 Observations and link to unknown parameter 6: p(x\é’)

» Distribution, structure of unknown 6: p(@)

Frequentist are pessimists:

» “All models are wrong, prove to me your estimate is good”

« Makes very few assumptions, e.qg. IE[XQ] < oo and constructs an
estimator (e.g., median of means of disjoint subsets of data)

» Prove guarantee E[(§ — §)?] <  under hypothetical true 6’s
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The regression problem

Given past sales data on zillow.com

, predict:

y = House sale price from

x ={# sq. ft., zip code, date of sale, etc.}

° ®
® O
o ©q ©
O
o O
@ ®
(cnv ® o ®

# square feet
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Training Data:

(i, i) fien
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http://zillow.com

The regression problem

Given past sales data on zillow.com, predict:

y = House sale price from

x ={# sq. ft., zip code, date of sale, etc.}

®
[

Sale Price

# square feet
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Training Data: T EE%CZ
{(xzvyz) i =1 g

Hypothesis: linear
o .T
Yi ~ T; W

Loss: Ieast squares

mm E

2

—QZ‘UJ
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The regression problem in matrix notation
" S

Wrs = arg minz (yi — x;-rw)2
1=1

= arg min(y — Xw)? (y — Xw)

w

_yl - _ajtlz—,_
Yn _5’32_




The regression problem in matrix notation
" S
@p.s = arg min ||y — Xuw||3

= arg min(y — Xw)? (y — Xw)



The regression problem in matrix notation
" S

s = argmin ||y — Xuw|[3
= (X'X)"' X"y

What about an offset?

n

- . 2
Wrs,brg = arg min (yi — (] w+b))
Ik
= arg min ||y — (Xw + 1b)]|§

w,b



Dealing with an offset
"

Wrs,brs = argfgigl ly — (Xw + 1b)]|3



Dealing with an offset
"

Wrs,brs = afgfgigl ly — (Xw + 1b)||5

XX g+ brsXT1 =Xy
1" Xws +b6171 =11y

If X?'1 =0 (i.e., if each feature is mean-zero) then

wrs = (X' X)) XY

/b\LS — %Zyz
i=1



The regression problem in matrix notation
"
Wps = argmin |ly — Xuwl|;
_ (XTX)—1XTy
But why least squares?

Consider y; = a:;-rw +¢€; where ¢ S N (0, 02)

P(y|lz,w,0) =



Maximizing log-likelihood

"
Maximize:

e

::

log P(D|w, o) = log( )"
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MLE is LS under linear model
" BN
Wrg = arg minz (yz — :U;-Fw)Z
1=1

@MLE = argmaXP(D]w,a)

if y;=2iw+e and ¢ S N(0,0%)

Urs = opne = (XIX)"IXTY




The regression problem

Given past sales data on zillow.com, predict:

y = House sale price from

x ={# sq. ft., zip code, date of sale, etc.}

®
[

Sale Price

# square feet
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Training Data: T EE%CZ
{(xzvyz) i =1 g

Hypothesis: linear
o .T
Yi ~ T; W

Loss: Ieast squares

mm E

2

—QZ‘UJ
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The regression problem
" I

Given past sales data on zillow.com, predict:
y = House sale price from
x ={# sq. ft., zip code, date of sale, etc.}

Training Data: T EE%CZ
{(xzvyz) i =1 g

Hypothesis: linear

~
Yi =~ T; W

Sale Price

Loss: Ieast squares

2
IIllIl E —Q’J U]
date of sale

©2017 Kevin Jamieson 29


http://zillow.com

The regression problem
" I

Training Data: v RY Transformed data:

n ;i € R
{(xuyz) =1 ’

Hypothesis: linear
_.T
Yi =~ T; W

Loss: Ieast squares

mmE —J:w



The regression problem
" I

Training Data: T Ee%id
{(xuyz) i =1 "

Hypothesis: linear
_.T
Yi =~ T; W

Loss: Ieast squares

2
HllIlE —a:w

Transformed data:

h : R? — RP maps original
features to a rich, possibly
high-dimensional space

_Zl(ﬂﬁ)_ _902_
ind=1: h(x) = 2(@ = :13
_hp.(x)_ | 2P

for d>1, generate {u; }le c R4

1
hi(x) =
(@) 1+ exp(u; x)

hj(z) = (uj x)?
hi(z) = COS(ZL?ZE)
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The regression problem
" S

Training Data: = %d Transformed data: Zlg”’g
Y € a(x
{(xuyz) - —1 h(z) = 5
h
Hypothesis: linear p(2)
T Hypothesis: linear
Yi = T, W

~ avA p
| o/ Y; R h(azz) w weER
Loss: least'squares

2 Loss: Ieast squares

. S 2
i Z (yz B QL;Fw) mmz — h(x;) )2

1=1
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The regression problem
" S

Training Data: x; € R Transformed data: ha ()]
(i, yi) Fiea M=
hp ()

Hypothesis: linear
yi ~ h(z;))Tw weR?

Loss: least squares

minz (yi — h(:z:7;)TUJ)2
i=1

Sale Price

date of sale
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The regression problem
" S

Training Data: x; € R Transformed data: ha ()]
(i, yi) Fiea M=
hp ()

Hypothesis: linear
yi ~ h(z;))Tw weR?

: Loss: least squares

minz (yi — h(:z:7;)TUJ)2
i=1

Sale Price
P 4

date of sale
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The regression problem
" S

Training Data: x; € R

; € R

Sale Price

Transformed data: hy(2)]
h

h(x) = 2(:13)

hp(w)

Hypothesis: linear
yi ~ h(z;))Tw weR?

Loss: least squares

—4 miﬂz (yz — h(iUi)Tw)Q
i=1

date of sale
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