Announcements

• HW3 problem 4c

Announcements

• HW3 problem 4c

Announcements

• HW3 problem 4c

Sequences and Recurrent Neural Networks

Machine Learning – CSE4546 Kevin Jamieson University of Washington

November 30, 2017

Variable length sequences

Images are usually standardized to be the same size (e.g., 256x256x3)

Neural Network

Variable length sequences

Images are usually standardized to be the same size (e.g., 256x256x3)

But what if we wanted to do classification on country-of-origin for names?

Variable length sequences

Basic Text/Document Processing

Machine Learning – CSE4546 Kevin Jamieson University of Washington

November 30, 2017

1. For each document *d* compute the proportion of times word *t* occurs out of all words in *d*, i.e. **term frequency**

$TF_{d,t}$

2. For each word *t* in your corpus, compute the proportion of documents out of *n* that the word *t* occurs, i.e., **document frequency**

DF_t

3. Compute score for word *t* in document *d* as $TF_{d,t} \log(\frac{1}{DF_t})$

Algorithm requires feature representations of the beers $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$

Reviews for each beer

Bag of Words weighted by TF*IDF Get 100 nearest neighbors using cosine distance Non-metric multidimensional scaling

Algorithm requires feature representations of the beers $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$

Reviews for each beer

Bag of Words weighted by TF*IDF Get 100 nearest neighbors using cosine distance Non-metric multidimensional scaling

Algorithm requires feature representations of the beers $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$

Weighted count vector for the ith beer:

$$z_i \in \mathbb{R}^{400,000}$$

Cosine distance: $d(z_i, z_j) = 1 - \frac{z_i^T z_j}{||z_i|| \, ||z_j||}$ <u>Two Hearted Ale - Nearest Neighbors:</u> **Bear Republic Racer 5 Avery IPA** Stone India Pale Ale (IPA) Founders Centennial IPA Smuttynose IPA Anderson Valley Hop Ottin IPA **AleSmith IPA BridgePort IPA Boulder Beer Mojo IPA** Goose Island India Pale Ale Great Divide Titan IPA **New Holland Mad Hatter Ale** Lagunitas India Pale Ale Heavy Seas Loose Cannon Hop3 Sweetwater IPA

Reviews for each beer

Bag of Words weighted by TF*IDF Get 100 nearest neighbors using cosine distance Non-metric multidimensional scaling

Algorithm requires feature representations of the beers $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$

Find an embedding
$$\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$$
 such that
 $||x_k - x_i|| < ||x_k - x_j||$ whenever $d(z_k, z_i) < d(z_k, z_j)$
for all 100-nearest neighbors. distance in 400,000
(10⁷ constraints, 10⁵ variables)
Solve with hinge loss and stochastic gradient descent.
(20 minutes on my laptop) $(d=2, \text{err}=6\%)$ $(d=3, \text{err}=4\%)$
Could have also used local-linear-embedding,
max-volume-unfolding, kernel-PCA, etc.

Reviews for each beer

Bag of Words weighted by TF*IDF Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Algorithm requires feature representations of the beers $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$

Reviews for each beer

Bag of Words weighted by TF*IDF Get 100 nearest neighbors using cosine distance Non-metric multidimensional scaling

Algorithm requires feature representations of the beers $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$

Reviews for each beer

Bag of Words weighted by TF*IDF Get 100 nearest neighbors using cosine distance Non-metric multidimensional scaling

Algorithm requires feature representations of the beers $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$

Reviews for
each beerBag of Words
weighted by
TF*IDFGet 100 nearest
neighbors using
cosine distanceNo
multic

Non-metric multidimensional scaling

Other document modeling

Matrix factorization:

- 1. Construct word x document matrix of counts
- 2. Compute non-negative matrix factorization
- 3. Use factorization to represent documents
- 4. Cluster documents into topics

Also see latent Dirichlet factorization (LDA)

Previous section presented methods to **embed documents** into a latent space

Alternatively, we can **embed words** into a latent space

This embedding came from directly querying for relationships.

word2vec is a popular unsupervised learning approach that just uses a text corpus (e.g. <u>nytimes.com</u>)

Training

Samples

(fox, over)

Source Text

The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog. \implies	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \implies	(fox, quick) (fox, brown) (fox, jumps)

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

©Kevin Jamieson

Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

©Kevin Jamieson

word2vec outputs

country - capital

slide: https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

©Kevin Jamieson

Active Learning, classification

Machine Learning – CSE4546 Kevin Jamieson University of Washington

November 30, 2017

Impressive recent advances in image recognition and translation...

Impressive recent advances in image recognition and translation...

Challenges for large models:

1) An enormous amount of *labeled data* is necessary for training

Time

Impressive recent advances in image recognition and translation...

Challenges for large models:

- 1) An enormous amount of *labeled data* is necessary for training
- 2) An enormous amount of *wall-clock time* is necessary for training

Nonadaptive label assignment

Nonadaptive label assignment

Nonadaptive label assignment

Adaptive label assignment

Nonadaptive label assignment

Adaptive label assignment

complexity (reliability/robustness, scalability/computation, etc)

complexity (reliability/robustness, scalability/computation, etc)

Being convinced that data-collection *should be adaptive* is not the same thing as knowing *how to be adaptive*.

THE NEW YORKER CARTOON CAPTION CONTEST

Caption Contest #553 January 20, 2017

Third "Maybe his second week will go better"

Second "I'd like to see other people"

First "The corrupt media will blow this way out of proportion"

THE NEW YORKER CARTOON CAPTION CONTEST

Bob Mankoff Cartoon Editor, The New Yorker

- $n \approx 5000$ captions submitted each week
- crowdsource contest to volunteers who rate captions
- goal: identify funniest caption

newyorker.com/cartoons/vote

Which caption do we show next?

Non-adaptive uniform distribution over captions
 Adaptive: stop showing captions that will not win

Which caption do we show next?

Non-adaptive uniform distribution over captions
 Adaptive: stop showing captions that will not win

Best-action identification problem

While algorithm does not exit:

algorithm shows caption *i* ∈ {1,...,*n*}
Observe iid Bernoulli with P("funny") = μ_i

Stopping rule

Sampling rule

Objective: with probability .99, identify $\arg\max_{i=1,...,n}\mu_i$ using as few total samples as possible

Best-arm Identification n=2

Consider n = 2 and flip coins i = 1, 2 to get $X_{i,1}, X_{i,2}, \ldots, X_{i,m}$

$$\widehat{\mu}_{i,m} = \frac{1}{m} \sum_{j=1}^{m} X_{i,j}$$

Test:
$$\widehat{\mu}_{1,m} - \widehat{\mu}_{2,m} \ge 0$$

By a Chernoff Bound, if $\Delta = \mu_1 - \mu_2$ then $m = 2\log(1/\delta)\Delta^{-2} \implies \hat{\mu}_{1,m} > \hat{\mu}_{2,m} + 2\sqrt{\frac{\log(1/\delta)}{2m}} \implies \mu_1 > \mu_2$ with probability $\ge 1 - 2\delta$ Arm 1 lower confidence bound > Arm 2 upper

Learn an accurate classifier using a small number of labels

Find the winner of a competition using a small number of judgements

Very related to adaptive A/B testing

Transcing to hold be carred out in holds:

Pure Exploration

Find the ad that results in highest click-through-rate and keep showing it

Balance of **exploration versus exploitation**