Announcements

- Homework 3 due tonight!
- HW 4 will be posted tonight. Start early.

©2017 Kevin Jamieson

Clustering

Machine Learning – CSE546 Kevin Jamieson University of Washington

November 21, 2016

Clustering images

[Goldberger et al.] 3

Clustering web search results

Hierarchical Clustering

Pick one:

- Bottom up: start with every point as a cluster and merge
- Top down: start with a single cluster containing all points and split

Different rules for splitting/merging, no "right answer"

Gives apparently interpretable tree representation. However, warning: even random data with no structure will produce a tree that "appears" to be structured.

Some Data

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

$$\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$$

Classify: Assign each point j∈{1,...N} to nearest center:

$$C^{(t)}(j) \leftarrow \arg\min_{i} ||\mu_i - x_j||^2$$

• Recenter: μ_i becomes centroid of its point:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

□ Equivalent to μ_i ← average of its points!

What is K-means optimizing?

$$F(\mu, C) = \sum_{j=1}^{N_{i}} ||\mu_{C(j)} - x_{j}||^{2}$$

- Optimal K-means:
 - \square min_umin_C F(μ ,C)

Does K-means converge??? Part 1

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

Fix μ, optimize C

Does K-means converge??? Part 2

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

Fix C, optimize μ

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

- 1. Represent image as grid of patches
- 2. Run k-means on the patches to build code book
- 3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 − 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2 × 2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

- 1. Represent image as grid of patches
- 2. Run k-means on the patches to build code book
- 3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 − 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2 × 2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

- 1. Represent image as grid of patches
- 2. Run k-means on the patches to build code book
- 3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 – 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2 × 2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Typical output of k-means on patches

Similar reduced representation can be used as a feature vector

Coates, Ng, Learning Feature Representations with K-means, 2012

Spectral Clustering

$$\mathbf{W}_{i,j} = \text{weight of edge } (i,j)$$

$$\mathbf{D}_{i,i} = \sum_{j=1}^{n} \mathbf{W}_{i,j} \qquad \mathbf{L} = \mathbf{D} - \mathbf{W}$$

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in {0,1}
- weighted graph with arbitrary similarities $\mathbf{W}_{i,j} = e^{-\gamma ||x_i x_j||^2}$

Let
$$f \in \mathbb{R}^n$$
 be a function over the nodes

$$\mathbf{f}^{T}\mathbf{L}\mathbf{f} = \sum_{i=1}^{N} g_{i}f_{i}^{2} - \sum_{i=1}^{N} \sum_{i'=1}^{N} f_{i}f_{i'}w_{ii'}$$
$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} w_{ii'}(f_{i} - f_{i'})^{2}.$$

Spectral Clustering

Adjacency matrix: W

$$\mathbf{W}_{i,j} = \text{weight of edge } (i,j)$$
 $\mathbf{D}_{i,i} = \sum_{j=1}^{n} \mathbf{W}_{i,j} \qquad \mathbf{L} = \mathbf{D} - \mathbf{W}$

Given feature vectors, could construct:

- (k=10)-nearest neighbor graph with weights in {0,1}

Popular to use the Laplacian \mathbf{L} or its normalized form $\widetilde{\mathbf{L}} = I - \mathbf{D}^{-1}\mathbf{W}$ as a regularizer for learning over graphs

Mixtures of Gaussians

Machine Learning – CSE546 Kevin Jamieson University of Washington

November 21, 2016

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

$$Y_1 \sim N(\mu_1, \sigma_1^2),$$

 $Y_2 \sim N(\mu_2, \sigma_2^2),$
 $Y = (1 - \Delta) \cdot Y_1 + \Delta \cdot Y_2,$
 $\Delta \in \{0, 1\} \text{ with } \Pr(\Delta = 1) = \pi$

 $\mathbf{Z} = \{y_i\}_{i=1}^n$ is observed data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta = (\mu, \sigma^2)$ then

$$\ell(\theta; \mathbf{Z}) = \sum_{i=1}^{n} \log[(1 - \pi)\phi_{\theta_1}(y_i) + \pi\phi_{\theta_2}(y_i)]$$

$$\Delta \in \{0,1\}$$
 with $\Pr(\Delta = 1) = \pi$

$$\theta = (\pi, \theta_1, \theta_2) = (\pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$$

$$\mathbf{Z} = \{y_i\}_{i=1}^n$$
 is observed data

$$\Delta = {\Delta_i}_{i=1}^n$$
 is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta = (\mu, \sigma^2)$ then

$$\ell(\theta; y_i, \Delta_i = 0) =$$

$$\ell(\theta; y_i, \Delta_i = 1) =$$

$$Y_1 \sim N(\mu_1, \sigma_1^2),$$

 $Y_2 \sim N(\mu_2, \sigma_2^2),$
 $Y = (1 - \Delta) \cdot Y_1 + \Delta \cdot Y_2,$

$$\Delta \in \{0,1\}$$
 with $\Pr(\Delta = 1) = \pi$

$$\theta = (\pi, \theta_1, \theta_2) = (\pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$$

 $\mathbf{Z} = \{y_i\}_{i=1}^n$ is observed data

 $\Delta = {\Delta_i}_{i=1}^n$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta = (\mu, \sigma^2)$ then

$$\ell(\theta; \mathbf{Z}, \boldsymbol{\Delta}) = \sum_{i=1}^{n} (1 - \Delta_i) \log[(1 - \pi)\phi_{\theta_1}(y_i)] + \Delta_i \log(\pi\phi_{\theta_2}(y_i)]$$

If we knew Δ , how would we choose θ ?

$$Y_1 \sim N(\mu_1, \sigma_1^2),$$

 $Y_2 \sim N(\mu_2, \sigma_2^2),$
 $Y = (1 - \Delta) \cdot Y_1 + \Delta \cdot Y_2,$

$$\Delta \in \{0,1\}$$
 with $\Pr(\Delta = 1) = \pi$

$$\theta = (\pi, \theta_1, \theta_2) = (\pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$$

$$\mathbf{Z} = \{y_i\}_{i=1}^n$$
 is observed data

$$\Delta = {\Delta_i}_{i=1}^n$$
 is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta = (\mu, \sigma^2)$ then

$$\ell(\theta; \mathbf{Z}, \boldsymbol{\Delta}) = \sum_{i=1}^{n} (1 - \Delta_i) \log[(1 - \pi)\phi_{\theta_1}(y_i)] + \Delta_i \log(\pi\phi_{\theta_2}(y_i)]$$

If we knew θ , how would we choose Δ ?

$$Y_1 \sim N(\mu_1, \sigma_1^2),$$

 $Y_2 \sim N(\mu_2, \sigma_2^2),$
 $Y = (1 - \Delta) \cdot Y_1 + \Delta \cdot Y_2,$

$$\Delta \in \{0,1\}$$
 with $\Pr(\Delta = 1) = \pi$

$$\theta=(\pi,\theta_1,\theta_2)=(\pi,\mu_1,\sigma_1^2,\mu_2,\sigma_2^2)$$

$$\mathbf{Z} = \{y_i\}_{i=1}^n$$
 is observed data

$$\Delta = {\Delta_i}_{i=1}^n$$
 is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta = (\mu, \sigma^2)$ then

$$\ell(\theta; \mathbf{Z}, \boldsymbol{\Delta}) = \sum_{i=1}^{n} (1 - \Delta_i) \log[(1 - \pi)\phi_{\theta_1}(y_i)] + \Delta_i \log(\pi\phi_{\theta_2}(y_i)]$$

$$\gamma_i(\theta) = \mathbb{E}[\Delta_i | \theta, \mathbf{Z}] =$$

- 1. Take initial guesses for the parameters $\hat{\mu}_1, \hat{\sigma}_1^2, \hat{\mu}_2, \hat{\sigma}_2^2, \hat{\pi}$ (see text).
- Expectation Step: compute the responsibilities

$$\hat{\gamma}_i = \frac{\hat{\pi}\phi_{\hat{\theta}_2}(y_i)}{(1-\hat{\pi})\phi_{\hat{\theta}_1}(y_i) + \hat{\pi}\phi_{\hat{\theta}_2}(y_i)}, \ i = 1, 2, \dots, N.$$
 (8.42)

3. Maximization Step: compute the weighted means and variances:

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) y_{i}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})}, \qquad \hat{\sigma}_{1}^{2} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) (y_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})},$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, \qquad \hat{\sigma}_{2}^{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} (y_{i} - \hat{\mu}_{2})^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}},$$

and the mixing probability $\hat{\pi} = \sum_{i=1}^{N} \hat{\gamma}_i / N$.

4. Iterate steps 2 and 3 until convergence.

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

Expectation Maximization Algorithm

The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:

Algorithm 8.2 The EM Algorithm.

- 1. Start with initial guesses for the parameters $\hat{\theta}^{(0)}$.
- Expectation Step: at the jth step, compute

$$Q(\theta', \hat{\theta}^{(j)}) = E(\ell_0(\theta'; \mathbf{T}) | \mathbf{Z}, \hat{\theta}^{(j)})$$
(8.43)

as a function of the dummy argument θ' .

- Maximization Step: determine the new estimate θ̂^(j+1) as the maximizer of Q(θ', θ̂^(j)) over θ'.
- 4. Iterate steps 2 and 3 until convergence.

Z is observed data

 Δ is unobserved data

 $\mathbf{T} = (\mathbf{Z}, \boldsymbol{\Delta})$

Missing data example

$$x_i \sim \mathcal{N}(\mu, \Sigma)$$
 but suppose some entries of x_i are missing

$$\ell(\theta|\mathbf{T},\theta) = -\frac{1}{2}\log(2\pi|\Sigma|) + (x_i - \mu)^T \Sigma^{-1}(x - \mu)$$

Z is observed data

 Δ is unobserved data

$$\mathbf{T} = (\mathbf{Z}, \boldsymbol{\Delta})$$

E Step:
$$\mathbb{E}[\ell(\theta'; \mathbf{T}) | \mathbf{Z}, \widehat{\theta}^{(j)}]$$

Natural choice for $\widehat{\theta}^{(0)}$?

Missing data example

$$x_i \sim \mathcal{N}(\mu, \Sigma)$$
 but suppose some entries of x_i are missing

$$\ell(\theta|\mathbf{T},\theta) = -\frac{1}{2}\log(2\pi|\Sigma|) + (x_i - \mu)^T \Sigma^{-1}(x - \mu)$$

Z is observed data

 Δ is unobserved data

$$\mathbf{T} = (\mathbf{Z}, \boldsymbol{\Delta})$$

E Step:
$$\mathbb{E}[\ell(\theta'; \mathbf{T}) | \mathbf{Z}, \widehat{\theta}^{(j)}]$$

Natural choice for $\widehat{\theta}^{(0)}$?

$$\mathbb{E}[Y|X=x] = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1}(x - \mu_X)$$

$$\mathsf{M} \ \mathsf{Step:} \qquad \widehat{\theta}^{(j+1)} = \arg \max_{\theta'} \mathbb{E}[\ell(\theta'; \mathbf{T}) | \mathbf{Z}, \widehat{\theta}^{(j)}]$$

Missing data example

$$x_i \sim \mathcal{N}(\mu, \Sigma)$$
 but suppose some entries of x_i are missing

$$\ell(\theta|\mathbf{T},\theta) = -\frac{1}{2}\log(2\pi|\Sigma|) + (x_i - \mu)^T \Sigma^{-1}(x - \mu)$$

Z is observed data

 Δ is unobserved data

$$\mathbf{T} = (\mathbf{Z}, \boldsymbol{\Delta})$$

E Step:
$$\mathbb{E}[\ell(\theta'; \mathbf{T}) | \mathbf{Z}, \widehat{\theta}^{(j)}]$$

Natural choice for $\widehat{\theta}^{(0)}$?

$$\mathbb{E}[Y|X=x] = \mu_Y + \Sigma_{YX}\Sigma_{XX}^{-1}(x-\mu_X)$$

M Step:
$$\widehat{\theta}^{(j+1)} = \arg\max_{\theta'} \mathbb{E}[\ell(\theta'; \mathbf{T}) | \mathbf{Z}, \widehat{\theta}^{(j)}]$$

Connection to matrix factorization?

Density Estimation

Machine Learning – CSE546 Kevin Jamieson University of Washington

November 21, 2016

Kernel Density Estimation

$$f(x) = \sum_{m=1}^{M} lpha_m \phi(x; \mu_m, oldsymbol{\Sigma}_m)$$
 A very "lazy" GMM

Kernel Density Estimation

Kernel Density Estimation

$$f(x) = \sum_{m=1}^{M} \alpha_m \phi(x; \mu_m, \mathbf{\Sigma}_m)$$

What is the Bayes optimal classification rule?

$$\hat{r}_{im} = \frac{\hat{\alpha}_m \phi(x_i; \hat{\mu}_m, \hat{\Sigma}_m)}{\sum_{k=1}^{M} \hat{\alpha}_k \phi(x_i; \hat{\mu}_k, \hat{\Sigma}_k)}$$

Predict $\arg \max_{m} \widehat{r}_{im}$

Generative vs Discriminative

