Announcements

"
 Homework 3 due tonight!
 HW 4 will be posted tonight. Start early.
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Clustering images
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Clustering web search results
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mhrmmoorrooamMmbmwdm\oﬁgw'mmaowmumndvmmolchmm The most widely used human racal
CHMGOTes Are Dased on viabile ats (especially skin color, cranial o facal features and Par taxtum), and sell-dertifcaton. Concaptions of race, &3 wal & 3DeCHC witys of QrOupiIng reces, viwy
by culture and over time, “mcﬁmmﬂbrwmucn-ﬂuwmmawunm Modemn debates « Polscal and
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Race - Wikipedia, the free encyclopedia ® A #
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of human beings) Race and ethncty n the Unted States Cansus, offical definitons of “race™ used by the US Cersus Bureau; Race and genetics, noton of racal classifcations based on
penetics. Mistonical defintons of race; Race (bearing), the nner and outer rings of a roling-clement bearing. RACE n molecular biclogy "Rapd .. General - Sumames - Television - Music
Literature - Video games
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Publications | Human Rights Walch ® 4 &
The use of torture, unlawful rendition, secret priscns, usfar trisls, . Risks to Migrants, Refugees, and Asyum Seekars in Egypt and lsrsel . In B run<p 10 the Beljng Olympics n August 2008,

Bas

Amnoncom Rm Tnmuamm Wmsm Frmb.M.h aoolu From Publahers Weeidy Sanch, a Beraley emeniius antivepoiogst, and Misle, an editor

wAW amazor. comRace- Realty Oerences o chido/08 13340881

AAPA Statement on Biological Aspects of Race ® 4 @
AAPA Staterment on Biclogical Aspects of Race ... Publshed in The American Joumnal of Pryscal Antrropoiogy. vol 109, pp 565870, 1856 . PREAMBLE As sclentists who study human
ethion and variation,

www physanth org/posstonytace Ml - jcache) - A

race; Defintion from Answers.com ® 4 &
race ~ Alowmmagwhummwommdunmaw&hfdmbymwnwm

WAW ANEWO'S comopairace-1 - jcache] - |

Dopefish.com ® 4 #
S8e for rewtion 83 wel 53 eperenced Dopefish folowers, chronicing B birth of the Dopefiah, 23 numerous sppearances n severs compuier games, and i3 evertual take-over of the human
race MunnodbyM' Donfonmmol JooSodo'dMoonSoMo

www opefish com ache Open [ Y
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Hierarchical Clustering
"

Pick one:

- Bottom up: start with every point as a cluster and
merge

- Top down: start with a single cluster containing
all points and split

Different rules for splitting/merging, no “right answer”

Gives apparently interpretable tree representation.
However, warning: even random data with no
structure will produce a tree that “appears” to be
structured.



Some Data
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K-means
= I

L
1. Ask user how many
clusters they’d like.

(e.qg. k=5)
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K-means
= I

O
1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k
cluster Center
locations
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— fAuton’s Graphics e ;‘M

K-means |
" I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k 0.6
cluster Center
locations

0,8

3. [Each datapoint finds

out which Center it's |
closest to. (Thus
each Center “owns”
a set of datapoints) | ,
| 0 0.2 0.4 0.6 0.8 1
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K-means
" I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. [Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns

Auton’s Graphics
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0.2
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K-means

1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!

©Kevin Jamieson 2017

Auton’s Graphics
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K-means
" JEE—
= Randomly initialize k centers
u® = u O, O

= Classify: Assign each point j&{1,...N} to nearest
center:

C}’(t)(j) «— arg mz_in || e; — ;lrj||2

= Recenter: u, becomes centroid of its point:
/.I.I(H_l) «— argmin Z ||u—:z.'j||2
®o : :
3:C(3)=1
Equivalent to w, < average of its points!

©Kevin Jamieson 2017 ©Kevin Jamieson 2017
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What is K-means optimizing?

" J———
= Potential function F(u,C) of centers u and point
allocations C:

N,
. "N : 2
F(u, ) = Y ey — !
71=1

= Optimal K-means:
min ming F(u,C)
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Does K-means converge??? Part 1

" A
= Optimize potential function:

k
. . Y\ o . - - N 2
min g Fle @) = minmin 2 2 kil
i=15:C(j)=i

= Fix u, optimize C
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Does K-means converge??? Part 2

" A
= Optimize potential function:

k
. . Y\ o . - - N 2
min g Fle @) = minmin 2 2 kil
i=15:C(j)=i

= Fix C, optimize u
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Vector Quantization, Fisher Vectors
o

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe marimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel, The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel
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Vector Quantization, Fisher Vectors

]
Vector Quantization (for compression)
1. Represent image as grid of patches

2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe marimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel, The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel
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Vector Quantization, Fisher Vectors

O
Vector Quantization (for compression)

1. Represent image as grid of patches

2. Run k-means on the patches to build code book

3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe marimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel, The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

Typical output of k-means

on patches
lll-lilli!

i

.ﬁ

Similar reduced representation can be used as a feature vector

Coates, Ng, Learning Feature Representations with K-means, 2012
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Spectral Clustering
" S

Adjacency matrix: W

W, ; = weight of edge (i, j) g \

D =) Wi, L=D-W
j=1

10

Given feature vectors, could construct:
- k-nearest neighbor graph with weights in {0,1} ,
- weighted graph with arbitrary similarities W, ; = e~ llei=%ill

function over the nodes

N N N
Let f € R" be a fILf = Zgifz'z - Z Z fifirwiir
i=1

= i=11i'=1
N
Z Z wii'(fi - fi’)2'

i=11=1

DO | =
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Spectral Clustering
" S

Adjacency matrix: W

W, ; = weight of edge (i, j)

Di,izzwz’,j L=D-W '
j=1 .
Given feature vectors, could construct:
- (k=10)-nearest neighbor graph with
weights in {0,1}
j 3
5 s
g T
j s
Popular to use the Laplacian L or g .

its normalized form L = I — D~'W
as a regularizer for learning over graphs

Eigenvectors

igervabe
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(-} ]

o m co2 008

<08

ot

Spectral Clustering
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(One) bad case for k-means

" J——
= Clusters may overlap

= Some clusters may be
“wider” than others
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(One) bad case for k-means

" J——
= Clusters may overlap

= Some clusters may be
“wider” than others
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Mixture models
" A

N
Y
Y1 ~ N(/tl,df), S
Y2 ~ N(ug,03), 3 I I
Y = 1-A)-1+A- Y, 5 [nga|nin| 'l llvlllll
0 2 4 6

A€ {0,1} withPrlA=1)=n«
Z = {y;}"_, is observed data

If ¢g(x) is Gaussian density with parameters 6 = (i, 0?) then

(0;Z) =) log[(1 — 7)o, (1) + o, (ys)]

1=1
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Mixture models
" A

N
Y
Y1 ~ N(/tl,df), S
Y2 ~ N(ug,03), 3 I I
Y = 1-A)-1+A- Y, 5 [nga|nin| 'l llvlllll
0 2 4 6

A€ {0,1} withPrlA=1)=n«
Z = {y;}"_, is observed data

B _ 2 2
0 = (m,0,,02) = (7, 11,07, p2,03) A = {A;} , is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 0?) then

0By, Ay =1) =
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Mixture models
" A

N
Y
Y1 ~ N(/ll,af)’ S
Y2 ~ N(ug,03), 3 I I
Y = (1-A4A)-Y1+A-Y,, 5 [nga|nin| 'l IIVIIIII
0 2 4 6

A€ {0,1} withPrlA=1)=n«
Z = {y;}"_, is observed data

B _ 2 2
0 = (m,0,,02) = (7, 11,07, p2,03) A = {A;} , is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 0?) then

00;Z,A) = (1= Ay)log[(1 — 7)o, (y:)] + Ai log(mo, (v:)]

1=1

If we knew A, how would we choose 67
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Mixture models
" A

N
Y
Y1 ~ N(/tl,df), S
Y2 ~ N(ug,03), 3 I I
Y = 1-A)-1+A- Y, 5 [nga|nin| 'l llvlllll
0 2 4 6

A€ {0,1} withPrlA=1)=n«
Z = {y;}"_, is observed data

B _ 2 2
0 = (m,0,,02) = (7, 11,07, p2,03) A = {A;} , is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 0?) then

00;Z,A) = (1= Ay)log[(1 — 7)o, (y:)] + Ai log(mo, (v:)]

1=1

If we knew 6, how would we choose A?
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Mixture models
" A

N
Y
Y1 ~ N(/ll,af)’ S
Y2 ~ N(ug,03), 3 I I
Y = (1-A4A)-Y1+A-Y,, 5 [nga|nin| 'l IIVIIIII
0 2 4 6

A€ {0,1} withPrlA=1)=n«
Z = {y;}"_, is observed data

B _ 2 2
0 = (m,0,,02) = (7, 11,07, p2,03) A = {A;} , is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 0?) then

00;Z,A) = (1= Ay)log[(1 — 7)o, (y:)] + Ai log(mo, (v:)]

1=1

v:(0) = E[Aq|0,Z] =

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 28



Mixture models
'__

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

1. Take initial guesses for the parameters ji,, a7, jip, 53,7 (see text).
2. Ezxpectation Step: compute the responsibilities

5 = wdg, (i)
b (L =) (w) + T, (i)’

i=1,2,...,N. (8.42)

3. Mazximization Step: compute the weighted means and variances:

vazl(l - ¥ )yi Zﬁl(l - %) (Wi — in)®

S im(1— ) Siea (1= %)
=N . N . A

L.':; YiVi 52 = ):.:1 Yilyi — #2)2

st=1 707 2 =

=N . ? =N A
Li:l Vi Li:) Yi

and the mixing probability & = Z:\;, 4 /N.

2
1

Q»

fh =

’

H2 =

b}

4. Iterate steps 2 and 3 until convergence.

©Kevin Jamieson 2017 ©Kevin Jamieson 2017
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Gaussian Mixture Example: Start——
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After first iteration
" I
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
" I
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data

" JA
.
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GMM clustering of the assay data
"
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Resulting
Density
Estimator




Expectation Maximization Algorithm
"

The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:

Algorithm 8.2 The EM Algorithm.

. e ; Z is observed data
1. Start with initial guesses for the parameters (%),

A is unobserved data

T = (Z,A)

2. Ezpectation Step: at the jth step, compute
Q0,09 = E(£y(0’; T)|Z,09)) (8.43)
as a function of the dummy argument 6'.

3. Maximization Step: determine the new estimate 9U+1) as the maxi-
mizer of Q(6',01)) over ¢’

4. Iterate steps 2 and 3 until convergence.

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 41



Missing data example
" JEE——

Ty N ( M, Z) but suppose some entries of x; are missing

Z is observed data

A is unobserved data

00| T, 0) = —% log(27[%) + (25 — )" B7 (z — p) T = (Z,A)

E Step: E[¢(6"; T)|Z, e(j)} Natural choice for ()7

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 42



Missing data example
"

Ty N ( M, Z) but suppose some entries of x; are missing

Z is observed data

A is unobserved data

((0|T, 0) = —% log(2r[S]) + (2 — )= (& — p) T (Z.A)

E Step: E[¢(6"; T)|Z, e(j)} Natural choice for ()7

EY|X = 2] = py + Sy xSy (= — px)

M Step: pUt) = argmaXE[ (0";T)|Z, 6’(])]
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Missing data example
" JEE——

Ty N ( M, Z) but suppose some entries of x; are missing

Z is observed data

A is unobserved data

00| T, 0) = —% log(27[%) + (25 — )" B7 (z — p) T = (Z,A)

. /. () ~
E Step: E[£(05T)|Z, 0] Natural choice for §(9)?
EY|X = 2] = py +SyxExx ( — px)

M Step: pUt) = argmaXE[ (0";T)|Z, 6’(])]

Connection to matrix factorization?
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Density Estimation
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Kernel Density Estimation
"

i
&
S
o
o ¥
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o
€ 3
2 o
° g
o
o
L= S O O VN T T T T AT WY - J
100 120 140 160 180 200 220
Systolic Blood Pressure (for CHD group)
M
f(z) = E AT fony X)) A very “lazy” GMM
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Kernel Density Estimation

» » - “® -~ »n » ~ = 0 » » - “ -«
A Am ~
o v v
o - o
5. s 8
3 | 3
;n* ]-. !n
H e e
o L J o
g- 1 1 = \/\
g . g J g 4=
@ e L4 o 1 L4 L4
» x - w0 o« b x0 . «~ L s = x -« " -«
Am L4 ~m

M
f@) =Y amd(®; pm, Em)
m=1
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Kernel Density Estimation

What is the Bayes

k9 L3
P L ‘n optimal classification
"1 . . rule?
ER { ¢ KR
i3 ] j 3
g4 14 3 /F—-\_/\
8. g g4 ~
. % e % . > % o % & - % o % = . Cmd(Zi; fom, Xm)
Am Ao . im

= —7— —
> k=1 Qr (T35 L, X))
Predict arg max,,, im
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Generative vs Discriminative
" S
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