Shameless plug for my course next quarter

CSE 599: Online and Adaptive Methods for Machine Learning.

Webpage: https://courses.cs.washington.edu/courses/cse599i/18wi/
Non-CSE need add-codes: https://goo.gl/forms/G76D6cOKNtdBlbe62

The standard approach to machine learning uses a training set of labeled
examples to learn a prediction rule that will predict the labels of new examples.
Collecting such training sets can be expensive and time-consuming. This
course will explore methods that leverage already-collected data to guide future
measurements, in a closed loop, to best serve the task at hand. We focus on
two paradigms: i) in pure-exploration we desire algorithms that identify or learn
a good model using as few measurements as possible (e.g., classification, drug
discovery, science), and ii) in regret minimization we desire algorithms that
balance taking measurements to learn a model with taking measurements to
exploit the model to obtain high reward outcomes (e.g., medical treatment
design, ad-serving). The course will assume introductory machine learning
(e.g., CSE 546) and maturity in topics like linear algebra, statistics, and
calculus. The course will be analysis heavy, with a focus on methods that work
well in practice.
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Principal Component

Analysis (continued)

Machine Learning — CSE546
Kevin Jamieson

University of Washington

November 16, 2017
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Linear projections
" S

il
. v
Given z; € R? and some ¢ < d consider ‘V/ '
U101

N
. - T =\12
min ) 1: |(zi —Z) = V Vg (zi — 2)||°
==

/ . h
where V, = [v1,v2,...,v,] is orthonormal: SN

VqTVq =1,

V, are the first g eigenvectors of X

N
Y= V(s — )T
V, are the first q principal components ;(% z)(z; — T)

Principal Component Analysis (PCA) projects (X — 1z7") down onto V|,
(X — 127V, = U,diag(ds, . .., d,) U u, =1,

Singular Value Decomposition defined as

X —1z7 = Usv”’
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Dimensionality reduction
" S
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V, are the first ¢ eigenvectors of ¥ and SVD X — 1z7 = Usv?t
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Power method - one at a time
» I
2= i(l’z‘ —T)(z; —7)" Ve = arg max v Yo . “;/
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Matrix completion

Given historical data on how users rated movies in past: -

17,700 movies, 480,189 users, 99,072,112 ratings (Sparsity: 1.2%)

Predict how the same users will rate movies in the future (for $1 million prize)

EE .,
'L .

Alice | 1 ? ? 4 ?

Bob | ? 2 5 ? ?
Carol | ? ? 4 5 ?
Dave | 5 ? ? ? 4




Matrix completion Usie 4 Ly crcvelsd
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Matrix completion
"
n movies, m users, |S]|ratings

arg min Z H(UVT)i,j — Szg”%
UERm = VERTXE (; j,s)es



Random projections
" I

PCA finds a low-dimensional representation that reduces population variance

N T - . . .
m V,V /! is a projection matrix that
. - 1 =\112 q"q

H\I/l:lz |(zi —2) - \O\F (@i — z)||%. minimizes error in basis of size g

-

z N
V, are the first ¢ eigenvectors of ¥ X := Z<xi — ) (x; — z)"

i=1

But what if | care about the reconstruction of the individual points?

. — T =\ 12
min max |(z; — %) = WeW (z; — T)|]
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Random projections

" S
. - T (12
min max (z; —2) = WeW (z; — T)|

Johnson-Lindenstrauss (1983)

Theorem 1.1. (Johnson-Lindenstrauss) Let € € (0,1/2). Let Q@ C RY be a set of n points and k = "%‘”P. There
exists a Lipshcitz mapping f : RY — R such that for all u,v € Q: (independent of d)

(1= €)llu—vl® < [|If(w) = F@)I* < 1+ €)flu—v|

Theorem 1.2. (Norm preservation) Let x € R%. Assume that the entries in A C R**9 are sampled independently
from N(0,1). Then,

1 . 2_('
Pr((1 - ¢)lz)|* < ||7EA$||2S(1+6)II:1:||2)21—-2e (*~€)k/4
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Nonlinear dimensionality reduction
"

Find a low dimensional representation that respects “local distances” in the higher

dimensional space . R
- Ny .
a#-.”"v;g. e d
" RE oY T
“nIA s AL 1Y
e ,f.LI; 'C“l.y,_,«
o] e e e,
"LT: .,\.' ‘;‘*5 -
> AN el
Ry e —
Many methods: o e \_.4
ace | v . ——— M. P
- Kernel PCA AT TETE T

ISOMAP
Local linear embedding

Maximum volume unfolding
Non-metric multidimensional scaling
Laplacian

Neural network auto encoder

%‘, Zhang et al 2010

Due to lack of agreed upon metrics,
it is very hard to judge which is
best. Also, results from 3 to 2 dims
is probably not representative of
1000 to 2 dimensions.
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Other matrix factorizations

=) :l.\:. }f;
Singular value decomposition %"&"’f
UTU =1, VI'V = I, S = drag(s) Yot Lol
UeR"™ VeR™ seRY B A T x 4
N T i UL G
X~U,S,V,
Nonnegative matrix factorization (NMF) NMF
W € R with W1 =1 d-dec =il
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B Ry with Bl =1 SRR
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Clustering

Machine Learning — CSE546
Kevin Jamieson
University of Washington

November 16, 2016
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Clustering web search results

web nows images wikipedia blogs jobs more »

All Rosults (1 remix
© Car
© Race cans )
© Photos, Races Scheduled v
¢ Gamae 4
® Track 2
® Nascar 2
@ Equipment And Safety
& Other Toplcs (1)
© Photos 22
© Game 14
© Definition (13
© Yoam (11
© Muman i
¢ Classification Of Human o
© Statement, Evelved 2
@ Other Topics («
© Weakerd
© Ethnicity And Race 7
© Race for the Cure »
¢ Race Information i»
more | il cusion

(rme))
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ThvhrmncoorrwamMwhbmmmdmhmommcgwwwhudvmmdm The most widely used human racal
CalGOres A Dased on visbie als (especially skin color, cranial o facial features and Par textun), and sell-identifcaton. Conceptions of race, &3 wel &3 306CHC witys of QAOupIng races, viry
by culture and over time, “n“mﬂhwrz‘cu-ﬂum‘ﬁw&c‘wuﬂm Modemn cebates « Poltcal and

on. wikipedia org'wWiiRace_(dasshication_of _human_beings

Race - Wikipedia, the free encyclopedia & A =

Gereral. Racing comgettions The Race (yachting race). or La course du milérare, a no-rnies round-the-word sailng event. Race (biology), classfcation of fiora and fauna; Race (dassification
of human beings) Race and ethncty in the Unted States Census, offical definitons of “race™ used by the US Cersus Bureau; Race and genetics, noton of racal classifcations based on
penetics. Mistorical defintons of race; Race (bearing), the nner and outer rings of a roling-element bearing. RACE in molecular biclogy "Rapd .. General - Surmames - Television - Music
Uterature - Video games

on. wiipedia. orp'WikiRace - [cache] - Live, Ask

Publications | Human Rights Walch ® 4 &
The use of 1orture, wnlawful rendition, secret prscns, usfar trisly, . Risks to Migrants, Refugees, and Asylum Seekars in Egypt and lsrsel .. In 1 runwp 10 the Beljng Olyrpics n August 2008,

WAW Rrw org Dack g de s race yoh A5«

' . : a . BaAs
Amazon.com ﬂ..u TMM”UWM WlSa\m Funh.M.h Sodu From Putiahans Weeidy Sanch, a Baraley emeniius antivepoiogst, and Misle, an editor
WAW amazor comRace: Real ty Oeroncer o a: 133400881 « i

AAPA Statement on Biological Aspects of Race ® 4 @
AAPA Staterment on Blological Aspects of Race ... Published in !he American Jounal of Priysical Anthvopoiogy. vol 101, pp 569570, 19656 . PREAMBLE As sclentists who study human
mmmm

waw shysanth cry/posstonsirace M - [cache) - Ase

race; Definition from Answers.com ® 4 &
race n Alo:dmrwhccrqhwhump@uwdw“umawmmwmwnmm

wWAW aNswWers. comiopcirace-1 - jcache] - Live

Dopefish.com ® 4 &

St for rewbies a3 well 83 experienced Dopefish folowens, chroniclng e birth of the Dopefiah, &5 numerous appearances n seversl compuler games, a7d ts evertual take-over of the human
race. Maintained by M« Doooh'mmul Joe Segler of Agogee Software.

www.dopefish com - [cache) - Open Directory

©Kevin Jamieson 2017 16



Hierarchical Clustering
" I

Pick one:

- Bottom up: start with every point as a cluster and
merge

- Top down: start with a single cluster containing
all points and split

Different rules for splitting/merging, no “right answer’

Gives apparently interpretable tree representation.
However, warning: even random data with no
structure will produce a tree that “appears” to be
structured.
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Some Data

©Kevin Jamieson 2017

0,8

0,6

0.4

0,2

l i i l
T T T T
0,2 0.4 0.6 0,8 1 |
%0
©Kevin Jamieson 2017 18



-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

©Kevin Jamieson 2017

xL

0,8

0,6

0.4

0,2

-

0,2

4

0.8

——

%07

©Kevin Jamieson 2017

19




Auton’s CGraphics

K-means
" S

1. Ask user how many

clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations
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=| futon’s Graphics |3 1

K-means -
I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k 0.6 T
cluster Center
locations

0.8 T

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns’

a set of datapoints) | ,, &

%0
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= Auton’s Graphics [l

K-means -
I

]
1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k 0.6 T
cluster Center
locations

0.8 T

3. Each datapoint finds

out which Centerits | =" |
closest to.
4. Each Center finds
the centroid of the 0.z T
points it owns
Iy 0 0,2 0.4 0.6 0.8 1

%0
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K-means

1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!

©Kevin Jamieson 2017
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K-means
" JEE
= Randomly initialize k centers
u® = 1w, 0. O

= Classify: Assign each point j&{1,...N} to nearest
center:

CW(G) — argmin||p; — ;][>

= Recenter: u. becomes centroid of its point:

/.l.l(H_l) «— arg rr}lln Z || — .’L'j||2
j:CG)=i
Equivalent to u. < average of its points!

©Kevin Jamieson 2017 ©Kevin Jamieson 2017
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What is K-means optimizing”?

"
= Potential function F(u,C) of centers u and point
allocations C.:

N,
1 LA : . 2
F(u, C) = ) |lney — =l
J=1

= Optimal K-means:
min ming F(u,C)

©Kevin Jamieson 2017



Does K-means converge??? Part 1

"
= Optimize potential function:
k
minmin F(p,C) = minmin )" ||p.,,-—;z.-j||2

o 0 i=150G)=i

= Fix u, optimize C o

Wé'cn I T ’JJ”LL
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Does K-means converge??? Part 2
" S

= Optimize potential function:
k
m“in n}ln F(u,C) = mum m(m Z | Z .||p.,~—."l:j||2
e 1=1 j:C(j)=i

= Fix C, optimize n
| - &7
o S~z D I 2

<)

ceC c-
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Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

——— T e
FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazrimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

28



Vector Quantization, Fisher Vectors
" A

B
Vector Quantization (for compression)

1. Represent image as grid of patches NMF E
2. Run k-means on the patches to build code book \ -

3. Represent each patch as a code word. Al i Ef.
4 .
v

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders gv" 3,‘.'.

of modern day statistics, to whom we owe mazximum-likelihood, sufficiency, and S 2 e

many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale Iy AR D 1

image at 8 bits per pizel. The center image is the result of 2 x 2 block VQ, using Jof: ’ Ty i Y B ag
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses e R o e O R E.;’ 0 =
only four code vectors, with a compression rate of 0.50 bits/pizel M B 8 S B 1;;-‘
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Vector Quantization, Fisher Vectors

" S
Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

Typical output of k-means
on patches
RENEZGZIRRNTRESS

fEeBEpadsiasoie

ENGNERRSNERINASS
Sl ELS )
FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders X L u
of modern day statistics, to whom we owe mazrimum-likelihood, sufficiency, and 1 l i |
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale B
image at 8 bits per pizel. The center image is the result of 2 x 2 block VQ, using Fr 1= =" T mANE
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses ii!'
only four code vectors, with a compression rate of 0.50 bits/pizel 4 4 \ I\

Similar reduced representation can be used as a feature vector

Coates, Ng, Learning Feature Representations with K-means, 2012
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Spectral Clustering ¢ 20 >0

'_\jl

Adjacency matrix: W
W, ; = weight of edge (i, j)

=2 Wi L=D-W
j=1

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in {0,1} ,
- weighted graph with arbitrary similarities W, ; = e~ /lei=ill

Let f c R™ be a fTLf — 2 o
function over the nodes Z 9ifi Z Z fifowii
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Spectral Clustering

Adjacency matrix: W

W, ; = weight of edge (4, 7)

=D Wi, L=D-W : 3 i
=1 T4 A . @
Given feature vectors, could construct: T4 e s 1
- (k=10)-nearest neighbor graph with )
weights in {0,1} | Eigenvectors
|

A |
g ]
Popular to use the Laplacian L or 2 i

its normalized form L = I — D~1W v B

as a regularizer for learning over graphs

o= >7(4:~ %) +/\fo
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