
©2017 Kevin Jamieson 2

Trees

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

Trees

3©2017 Kevin Jamieson

Build a binary tree, splitting along axes

Trees

4©2017 Kevin Jamieson

Build a binary tree, splitting along axes

How do you split?

When do you stop?

Kevin Jamieson 2016 5

Learning decision trees

■ Start from empty decision tree
■ Split on next best attribute (feature)

Use, for example, information gain to select attribute
Split on

■ Recurse
■ Prune

Trees

6©2017 Kevin Jamieson

• Trees

• have low bias, high variance

• deal with categorial variables
well

• intuitive, interpretable

• good software exists

• Some theoretical guarantees

©2017 Kevin Jamieson 7

Random Forests

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

Random Forests

8©2017 Kevin Jamieson

Tree methods have low bias but high variance.

One way to reduce variance is to
construct a lot of “lightly correlated”
trees and average them:

“Bagging:” Bootstrap aggregating

Random Forrests

9©2017 Kevin Jamieson

m~sqrt(p),p/3

10

infer
body parts

per pixel cluster pixels to
hypothesize

body joint
positions

capture
depth image &

remove bg

fit model &
track skeleton

https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/
CVPR20201120-20Final20Video.mp4

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CVPR20201120-20Final20Video.mp4

Random Forrest

11©2017 Kevin Jamieson

3 nearest neighborRandom forrest

Random Forrest

42©2017 Kevin Jamieson

E[(1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with

E[Yi] = y, E[(Yi � y)2] = �2
, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent

Random Forests

13©2017 Kevin Jamieson

• Random Forests

• have low bias, low variance

• deal with categorial variables well

• not that intuitive or interpretable

• good software exists

• Some theoretical guarantees

• Can still overfit

©2017 Kevin Jamieson 14

Boosting

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

Boosting

15©2017 Kevin Jamieson

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):
An algorithm A is a weak learner for a hypothesis class H that maps X to

{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly

classifies h with error at most 1/2� �

Boosting

16©2017 Kevin Jamieson

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):
An algorithm A is a weak learner for a hypothesis class H that maps X to

{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly

classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!”

• 1995 Schapire and Freund: “Yes, practically” AdaBoost

Boosting

17©2017 Kevin Jamieson

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):
An algorithm A is a weak learner for a hypothesis class H that maps X to

{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly

classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!”

• 1995 Schapire and Freund: “Yes, practically” AdaBoost

• 2014 Tianqi Chen: “Scale it up!” XGBoost

©2017 Kevin Jamieson 18

Boosting and Additive
Models

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

Additive models

19©2017 Kevin Jamieson

• Consider the first algorithm we used to get good
classification for MNIST. Given:

• Generate random functions:

• Learn some weights: 

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

bw = argmin

w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

Additive models

20©2017 Kevin Jamieson

• Consider the first algorithm we used to get good
classification for MNIST. Given:

• Generate random functions:

• Learn some weights: 

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

An interpretation:

Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin

w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

Additive models

21©2017 Kevin Jamieson

• Consider the first algorithm we used to get good
classification for MNIST. Given:

• Generate random functions:

• Learn some weights: 

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

An interpretation:

Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin

w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

bw, b�1, . . . ,
b
�t = arg min

w,�1,...,�p

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

is in general computationally hard

Forward Stagewise Additive models

22©2017 Kevin Jamieson

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

Forward Stagewise Additive models

23©2017 Kevin Jamieson

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

AdaBoost:
b(x, �): classifiers to {�1, 1}

L(y, f(x)) = exp(�yf(x))

Forward Stagewise Additive models

24©2017 Kevin Jamieson

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

b(x, �): regression trees

Boosted Regression Trees:
L(y, f(x)) = (y � f(x))2

Forward Stagewise Additive models

25©2017 Kevin Jamieson

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

Boosted Regression Trees:
L(y, f(x)) = (y � f(x))2

Efficient: No harder than learning regression trees!

Forward Stagewise Additive models

26©2017 Kevin Jamieson

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

b(x, �): regression trees

Boosted Logistic Trees: L(y, f(x)) = y log(f(x)) + (1� y) log(1� f(x))

Computationally hard to update

Gradient Boosting

27©2017 Kevin Jamieson

LS fit regression tree to n-dimensional gradient, take a step in that direction

Least squares, exponential loss easy. But what about cross entropy? Huber?

XGBoost

Gradient Boosting

28©2017 Kevin Jamieson

Least squares, 0/1 loss easy. But what about cross entropy? Huber?

AdaBoost uses 0/1 loss,
all other trees are minimizing
binomial deviance

Additive models

29©2017 Kevin Jamieson

• Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

Additive models

30©2017 Kevin Jamieson

• Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

• Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

• Kind of like sparsity?

Additive models

31©2017 Kevin Jamieson

• Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

• Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

• Kind of like sparsity?

• Gradient boosting generalization with good software
packages (e.g., XGBoost). Effective on Kaggle

• Robust to overfitting and can be dealt with with
“shrinkage” and “sampling”

Bagging versus Boosting

32©2017 Kevin Jamieson

• Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

• Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

• Empirically, boosting appears to outperform bagging

