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Build a binary tree, splitting  along axes
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Build a binary tree, splitting  along axes

How do you split?

When do you stop?
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Learning decision trees

■ Start from empty decision tree 
■ Split on next best attribute (feature) 

Use, for example, information gain to select attribute 
Split on  

■ Recurse 
■ Prune
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• Trees 

• have low bias, high variance 

• deal with categorial variables 
well 

• intuitive, interpretable 

• good software exists 

• Some theoretical guarantees 
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Tree methods have low bias but high variance.

One way to reduce variance is to 
construct a lot of “lightly correlated” 
trees and average them: 

“Bagging:” Bootstrap aggregating



Random Forrests
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m~sqrt(p),p/3
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infer
body parts

per pixel cluster pixels to
hypothesize

body joint
positions

capture
depth image &

remove bg

fit model &
track skeleton

https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/
CVPR20201120-20Final20Video.mp4

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CVPR20201120-20Final20Video.mp4
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3 nearest neighborRandom forrest
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E[( 1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with

E[Yi] = y, E[(Yi � y)2] = �2
, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent
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• Random Forests 

• have low bias, low variance 

• deal with categorial variables well 

• not that intuitive or interpretable 

• good software exists 

• Some theoretical guarantees  

• Can still overfit
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• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

Weak learner definition (informal): 
An algorithm A is a weak learner for a hypothesis class H that maps X to

{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly

classifies h with error at most 1/2� �
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• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

Weak learner definition (informal): 
An algorithm A is a weak learner for a hypothesis class H that maps X to

{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly

classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Yes, practically” AdaBoost



Boosting

17©2017 Kevin Jamieson

• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

Weak learner definition (informal): 
An algorithm A is a weak learner for a hypothesis class H that maps X to

{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly

classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Yes, practically” AdaBoost 

• 2014 Tianqi Chen: “Scale it up!” XGBoost
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• Consider the first algorithm we used to get good 
classification for MNIST. Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

bw = argmin

w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!
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• Consider the first algorithm we used to get good 
classification for MNIST. Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

An interpretation:

Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin

w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!
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• Consider the first algorithm we used to get good 
classification for MNIST. Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

An interpretation:

Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin

w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

bw, b�1, . . . ,
b
�t = arg min

w,�1,...,�p

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

is in general computationally hard
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b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x
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b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

AdaBoost: 
b(x, �): classifiers to {�1, 1}

L(y, f(x)) = exp(�yf(x))
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b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

b(x, �): regression trees

Boosted Regression Trees: 
L(y, f(x)) = (y � f(x))2
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b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

Boosted Regression Trees: 
L(y, f(x)) = (y � f(x))2

Efficient: No harder than learning regression trees!
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b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e

��

T
x

b(x, �): regression trees

Boosted Logistic Trees: L(y, f(x)) = y log(f(x)) + (1� y) log(1� f(x))

Computationally hard to update
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LS fit regression tree to n-dimensional gradient, take a step in that direction

Least squares, exponential loss easy. But what about cross entropy? Huber?

XGBoost
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Least squares, 0/1 loss easy. But what about cross entropy? Huber?

AdaBoost uses 0/1 loss, 
all other trees are minimizing  
binomial deviance
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• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 
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• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 

• Computationally efficient with “weak” learners. But 
can also use trees! Boosting can scale. 

• Kind of like sparsity? 
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• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 

• Computationally efficient with “weak” learners. But 
can also use trees! Boosting can scale. 

• Kind of like sparsity? 

• Gradient boosting generalization with good software 
packages (e.g., XGBoost). Effective on Kaggle 

• Robust to overfitting and can be dealt with with 
“shrinkage” and “sampling” 



Bagging versus Boosting

32©2017 Kevin Jamieson

• Bagging averages many low-bias, lightly 
dependent classifiers to reduce the variance 

• Boosting learns linear combination of high-bias, 
highly dependent classifiers to reduce error 

• Empirically, boosting appears to outperform bagging


