Trees

Machine Learning — CSE546
Kevin Jamieson

University of Washington

October 26, 2017

©2017 Kevin Jamieson

Trees

"
Build a binary tree, splitting along axes

M
f(@) =) eml(z € Rm).

X1<y
}

Rs

X2 <t X <t3 Ry ts
R3
X2 <ty t2 R4
Ri R: Rs |/—‘
Ry
R4 Rs i t3

©2017 Kevin Jamieson

Trees

M Build a binary tree, splitting along axes
f(@)=) cml(z € Rp).
m=1

How do you split?

Ri Rz Rs When do you stop?

©2017 Kevin Jamieson

Learning decision trees
" J———
= Start from empty decision tree

= Split on next best attribute (feature)
Use, for example, information gain to select attribute
Split on arg max IG(X;) = argmax H(Y) — H(Y | X;)
= Recurse 'l' '2'

» Prune -
X <t f(z) = Z eml(z € Rpy,).

m=1

Trees

|
o e Trees
f(@) =) eml(z € Rp). have low bias, high variance
m=1

 deal with categorial variables
well

X<t * intuitive, interpretable

» good software exists

« Some theoretical guarantees

©2017 Kevin Jamieson

Random Forests

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 26, 2017

©2017 Kevin Jamieson

Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to
construct a lot of “lightly correlated”
trees and average them:

“Bagging:” Bootstrap aggregating -

©2017 Kevin Jamieson

Random Forrests

"
Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n;,i, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}7.
m~sqrt(p),p/3

To make a prediction at a new point z:

Regression: fB(z) = L S0, Ty(z).

Classification: Let C'b(z) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(z)}P.

©2017 Kevin Jamieson

The Kinect pose estimation pipeline

capture
depth image &

remove bg i

A

infer ,
body parts “ ‘
per pixel cluster pixels to
_ hypothesize

https://www.microsoft.com/en-us/ body joint :
research/wp-content/uploads/2016/02/ y fit model &

CVPR20201120-20Final20Video.mp4 positions track skeleton

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CVPR20201120-20Final20Video.mp4

Random Forrest
'—

Random forrest

Training Error: 0.000 1 %
TestError: 0238 !
Bayes Error: 0.210 0

©2017 Kevin Jamieson

3 nearest neighbor

Training Error: 0,130 2 %
Test Error: 0.242
Bayes Error: 0.210 0

Random Forrest

andom variables ,...,Yp with

; _ 2
Yi —y)(Y; —y)| = po
The Yi’s are identically distributed but not independent 8

%E(fz&, g+ D g (h-9)

el —— ”J‘

- E/‘Q_’?dz + 2Pt S

©2017 Kevin Jamieson 42

Random Forests

"
]
 Random Forests
 have low bias, low variance
 deal with categorial variables well
* not that intuitive or interpretable
» good software exists
« Some theoretical guarantees

e Can still overfit

©2017 Kevin Jamieson

13

Boosting

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 26, 2017

©2017 Kevin Jamieson

Boosting
" JEEE——

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

©2017 Kevin Jamieson

15

Boosting
" JEE—

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to

{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Yes, practically” AdaBoost

©2017 Kevin Jamieson 16

Boosting
" JE——

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to

{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Yes, practically” AdaBoost
« 2014 Tiangi Chen: “Scale it up!” XGBoost

©2017 Kevin Jamieson 17

Boosting and Additive

Models

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 26, 2017

©2017 Kevin Jamieson

Additive models

" A
« Consider the first algorithm we used to get good
classification for MNIST. Given: {(z:,y:)} o1 z; € R,y € {—1,1}

 Generate random functions: ¢,: R =R ¢t=1,...,p

. n p
e Learn some weights: & = arg minZLoss (y Zwt¢t(xi)>
= t=1

 Classify new data: f(z) =sign <Zwt¢t)

©2017 Kevin Jamieson 19

Additive models

" A
« Consider the first algorithm we used to get good
classification for MNIST. Given: {(z:,y:)} o1 z; € R,y € {—1,1}

 Generate random functions: ¢,: R =R ¢t=1,...,p

n p
e Learn some weights: & = arg minZLoss (yi,Zwtcbt(xi))

 Classify new data: f(z) =sign <Zwt¢t)

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

©2017 Kevin Jamieson 20

Additive models

" A
« Consider the first algorithm we used to get good
classification for MNIST. Given: {(z:,y:)}i-1 z; € R,y € {—1,1}

 Generate random functions: ¢,: R =R ¢t=1,...,p

n p
e Learn some weights: & = arg min) ~Loss (yi,Zwtcbt(xi))
1=1 t=1

 Classify new data: f(z) =sign (Z @tqﬁt(aﬁ))

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

IS In general computationally hard

©2017 Kevin Jamieson 21

Forward Stagewise Additive models

b(x,v) is a function with parameters - Examples: b(z,7) = 1 _
l4+e 7=
Algorithm 10.2 Forward Stagewise Additive Modeling. _ b(:[}, 7) _ ’711{.’133 < ’72}

1. Initialize fo(z) = 0.
2. Form =1to M:

(a) Compute
IV.
(Bm; Ym) = arg min D L(yi, fm—a(2:) + Bb(i37))-
B

(b) Set fin (T) = fm—l(l') + ,3,,.b(x; ’7,,,).

|dea: greedily add one function at a time

©2017 Kevin Jamieson 22

Forward Stagewise Additive models

— 1

b(x,v) is a function with parameters - Examples: b(z,7) = 1 _
+e T

Algorithm 10.2 Forward Stagewise Additive Modeling. b(ZC 7) _ ’711{.’133 < ’72}
A : — <

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(BmsYm) = argmin Y _ L(yi, fn—1(:) + Bb(zi37)).
R C |

(b) Set fin (T) = fm—l(l') + ,3,,.b(x; ’7,,,).

|dea: greedily add one function at a time

AdaBoost: b(x,~): classifiers to {—1, 1}
L(y, f(x)) = exp(—yf(z))

©2017 Kevin Jamieson

Forward Stagewise Additive models

— 1

b(x,v) is a function with parameters - Examples: b(z,~) = _
l+e 7"

Algorithm 10.2 Forward Stagewise Additive Modeling. b(ZC 7) _ ’711{.’133 < ’72}
A : — <

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(BmsYm) = argmin Y _ L(yi, fn—1(:) + Bb(zi37)).
R C |

(b) Set fin (T) = fm—l(l') + ,3,,.b(x; ’7,,,).

|dea: greedily add one function at a time

Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

b(z,v): regression trees

©2017 Kevin Jamieson

Forward Stagewise Additive models

" J
= 1
b(x,v) is a function with parameters - Examples: b(z,~)

1 +e e

Algorithm 10.2 Forward Stagewise Additive Modeling. b(g;7 f)/) — 711{3;3 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute

N
(Bm,Ym) = arg %ITZ L(yi, fm—1(zi) + Bb(z4;7))-
BT |

(b) SCt fm(x) = fvu—l(x) + ,me(x; 7"1)-

|dea: greedily add one function at a time

Boosted Regression Trees: Ly, f(z)) = (y — f(z))*
L(yi, frm—1(z:) + Bb(zi37)) = (4 — fm—1(2:) — Bb(zi57))*

= ("‘im - ﬂb(mi;'Y))z, Tim = Yi — fm-1(Ti)

Efficient: No harder than learning regression trees!

©2017 Kevin Jamieson

Forward Stagewise Additive models

= 1

b(x,v) is a function with parameters - Examples: b(z,7) = 1 _
+e T

Algorithm 10.2 Forward Stagewise Additive Modeling.
1. Initialize fo(z) = 0.

2. Form =1 to M:

(a) Compute

N
(Bm; Ym) = arg min > L(ws, fmr(2:) + Bb(zi37)).
B

(b) Set f"l (x) — fvu—l(x) + ,me(x; ‘7"').

|dea: greedily add one function at a time
Boosted Logistic Trees: L(y, f(z)) = ylog(f(z)) + (1 — y)log(1 — f(x))

b(x,7): regression trees

Computationally hard to update

©2017 Kevin Jamieson

b(x,v) =1 1{rs < 12}

Gradient Boosting

"
L
Least squares, exponential loss easy. But what about cross entropy? Huber?

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(x) = argmin., E:V:, L(yi, ™).
2, Form =1 to M:

(a) Fori=1,2,..., N compute

[OL(y.J(at.))

81 (z,)];=;m_, . XGBoost

mn

(b) Fit a regression tree to the targets r;,, giving terminal regions
RJ"I? j o 1,2’ “ ey Jm.

(¢) For j = 1,2,...,J,s compute

YVim =argmin 3 L (Wi, frm-1 (i) +7).
€ERy,

(d) Update fim(z) = fm-1(2) + L72 YimI(z € Rjm)-

3. Output f(z) = ful(z).

LS fit regression tree to n-dimensional gradient, take a step in that direction

©2017 Kevin Jamieson 27

Gradient Boosting

" JEE—
]
Least squares, 0/1 loss easy. But what about cross entropy? Huber?

- — Stumps
s 1 A 10 Node
\ 100 Node
Adaboost AdaBoost uses 0/1 loss,
) \ all other trees are minimizing
o \ binomial deviance
5
o L
b
LI ",
S
o
o) . . N -
0 100 200 300 400

Number of Terms

©2017 Kevin Jamieson 28

Additive models

« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

©2017 Kevin Jamieson

29

Additive models

" JEE—
« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

 Kind of like sparsity?

©2017 Kevin Jamieson

30

Additive models

Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

Kind of like sparsity?

Gradient boosting generalization with good software
packages (e.g., XGBoost). Effective on Kaggle

Robust to overfitting and can be dealt with with
“shrinkage” and “sampling”

©2017 Kevin Jamieson

31

Bagging versus Boosting

" J———
« Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

« Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

« Empirically, boosting appears to outperform bagging

©2017 Kevin Jamieson

32

