Trees

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Trees

Build a binary tree, splitting along axes

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]
Trees

Build a binary tree, splitting along axes

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]

How do you split?

When do you stop?
Learning decision trees

- Start from empty decision tree
- Split on **next best attribute (feature)**
 - Use, for example, information gain to select attribute
 - Split on
- Recurse
- Prune

\[
\begin{align*}
\arg \max_i IG(X_i) &= \arg \max_i H(Y) - H(Y \mid X_i) \\

f(x) &= \sum_{m=1}^M c_m I(x \in R_m).
\end{align*}
\]
Trees

- Trees
 - have low bias, high variance
 - deal with categorical variables well
 - intuitive, interpretable
 - good software exists
 - Some theoretical guarantees

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]
Random Forests

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Random Forests

Tree methods have **low bias** but **high variance**.

One way to reduce variance is to construct a lot of “lightly correlated” trees and average them:

“Bagging:” Bootstrap aggregating
Random Forrests

Algorithm 15.1 Random Forest for Regression or Classification.

1. For $b = 1$ to B:

 (a) Draw a bootstrap sample Z^* of size N from the training data.

 (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

 i. Select m variables at random from the p variables.

 ii. Pick the best variable/split-point among the m.

 iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = \text{majority vote} \{\hat{C}_b(x)\}_1^B$.

$m \sim \text{sqrt}(p), p/3$
The Kinect pose estimation pipeline

capture depth image & remove bg

infer body parts per pixel

cluster pixels to hypothesize body joint positions

fit model & track skeleton

Random Forrest

Random forest

3 nearest neighbor
Given random variables Y_1, Y_2, \ldots, Y_B with
\[\mathbb{E}[Y_i] = y, \mathbb{E}[(Y_i - y)^2] = \sigma^2, \mathbb{E}[(Y_i - y)(Y_j - y)] = \rho \sigma^2 \]

The Y_i's are identically distributed but not independent.

\[
\mathbb{E}\left(\frac{1}{B} \sum_{i=1}^{B} (Y_i - y)^2\right) = \mathbb{E}\left[\frac{1}{B^2} \left(\sum_{i=1}^{B} (Y_i - y)^2 + \sum_{i \neq j} (Y_i - y)(Y_j - y) \right) \right]
\]

\[
= \frac{1}{B^2} \left(\sum_{i=1}^{B} \sigma^2 + \sum_{i \neq j} \rho \sigma^2 \right)
\]

\[
= \frac{1}{B} \sigma^2 + \frac{\beta(\beta - 1)}{B^2} \rho \sigma^2
\]

\[
= \frac{\sigma^2}{B} + \rho \sigma^2
\]
Random Forests

- Random Forests
 - have low bias, low variance
 - deal with categorical variables well
 - not that intuitive or interpretable
 - good software exists
 - Some theoretical guarantees
 - Can still overfit
Boosting

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Boosting

• 1988 Kearns and Valiant: “Can weak learners be combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that A correctly classifies h with error at most $1/2 - \gamma$.
Boosting

• 1988 Kearns and Valiant: “Can weak learners be combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that A correctly classifies h with error at most $1/2 - \gamma$

• 1990 Robert Schapire: “Yup!”

• 1995 Schapire and Freund: “Yes, practically” AdaBoost
Boosting

• 1988 Kearns and Valiant: “Can weak learners be combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that A correctly classifies h with error at most $1/2 - \gamma$

• 1990 Robert Schapire: “Yup!”
• 1995 Schapire and Freund: “Yes, practically” AdaBoost
• 2014 Tianqi Chen: “Scale it up!” XGBoost
Boosting and Additive Models

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Additive models

- Consider the first algorithm we used to get good classification for MNIST. Given: \(\{(x_i, y_i)\}_{i=1}^{n} \) \(x_i \in \mathbb{R}^d, y_i \in \{-1, 1\} \)
- Generate **random** functions: \(\phi_t : \mathbb{R}^d \to \mathbb{R} \quad t = 1, \ldots, p \)
- Learn some weights: \(\hat{w} = \arg \min_w \sum_{i=1}^{n} \text{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right) \)
- Classify new data: \(f(x) = \text{sign} \left(\sum_{t=1}^{p} \hat{w}_t \phi_t(x) \right) \)
Additive models

• Consider the first algorithm we used to get good classification for MNIST. Given: \(\{(x_i, y_i)\}_{i=1}^{n} \) \(x_i \in \mathbb{R}^d, y_i \in \{-1, 1\} \)

• Generate **random** functions: \(\phi_t : \mathbb{R}^d \rightarrow \mathbb{R} \quad t = 1, \ldots, p \)

• Learn some weights: \(\hat{w} = \arg \min_w \sum_{i=1}^{n} \text{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right) \)

• Classify new data: \(f(x) = \text{sign} \left(\sum_{t=1}^{p} \hat{w}_t \phi_t(x) \right) \)

An interpretation:
Each \(\phi_t(x) \) is a classification rule that we are assigning some weight \(\hat{w}_t \)
Additive models

- Consider the first algorithm we used to get good classification for MNIST. Given: \(\{(x_i, y_i)\}_{i=1}^n \) \(x_i \in \mathbb{R}^d, y_i \in \{-1, 1\} \)
- Generate random functions: \(\phi_t : \mathbb{R}^d \to \mathbb{R} \quad t = 1, \ldots, p \)
- Learn some weights: \(\hat{w} = \arg\min_w \sum_{i=1}^n \text{Loss} \left(y_i, \sum_{t=1}^p w_t \phi_t(x_i) \right) \)
- Classify new data: \(f(x) = \text{sign} \left(\sum_{t=1}^p \hat{w}_t \phi_t(x) \right) \)

An interpretation:
Each \(\phi_t(x) \) is a classification rule that we are assigning some weight \(\hat{w}_t \)

\[
\hat{w}, \hat{\phi}_1, \ldots, \hat{\phi}_t = \arg\min_{w, \phi_1, \ldots, \phi_p} \sum_{i=1}^n \text{Loss} \left(y_i, \sum_{t=1}^p w_t \phi_t(x_i) \right)
\]

is in general computationally hard
Forward Stagewise Additive models

\[b(x, \gamma) \] is a function with parameters \(\gamma \)

Examples:

\[b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}} \]

\[b(x, \gamma) = \gamma_1 1\{x_3 \leq \gamma_2\} \]

Algorithm 10.2 Forward Stagewise Additive Modeling.

1. Initialize \(f_0(x) = 0 \).
2. For \(m = 1 \) to \(M \):

 (a) Compute

 \[(\beta_m, \gamma_m) = \arg \min_{\beta, \gamma} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)). \]

 (b) Set \(f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m) \).

Idea: greedily add one function at a time
Forward Stagewise Additive models

\[b(x, \gamma) \text{ is a function with parameters } \gamma \]

Examples:

\[b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}} \]

\[b(x, \gamma) = \gamma_1 1\{x_3 \leq \gamma_2\} \]

Algorithm 10.2 Forward Stagewise Additive Modeling.

1. Initialize \(f_0(x) = 0 \).
2. For \(m = 1 \) to \(M \):

 (a) Compute

 \[(\beta_m, \gamma_m) = \arg \min_{\beta, \gamma} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)). \]

 (b) Set \(f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m). \)

Idea: greedily add one function at a time

AdaBoost: \(b(x, \gamma) \): classifiers to \(\{-1, 1\} \)

\[L(y, f(x)) = \exp(-y f(x)) \]
Forward Stagewise Additive models

$b(x, \gamma)$ is a function with parameters γ

Examples:

$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

$$b(x, \gamma) = \gamma_1 1\{x_3 \leq \gamma_2\}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

1. Initialize $f_0(x) = 0$.
2. For $m = 1$ to M:

 (a) Compute
 $$\left(\beta_m, \gamma_m\right) = \arg\min_{\beta, \gamma} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

 (b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees:

$$L(y, f(x)) = (y - f(x))^2$$

$b(x, \gamma)$: regression trees
Forward Stagewise Additive models

\[b(x, \gamma) \] is a function with parameters \(\gamma \)

Examples:

\[b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}} \]

\[b(x, \gamma) = \gamma_1 1\{x_3 \leq \gamma_2\} \]

Algorithm 10.2 Forward Stagewise Additive Modeling.

1. Initialize \(f_0(x) = 0 \).
2. For \(m = 1 \) to \(M \):

 (a) Compute
 \[
 (\beta_m, \gamma_m) = \arg \min_{\beta, \gamma} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).
 \]

 (b) Set \(f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m) \).

Idea: greedily add one function at a time

Boosted Regression Trees:

\[L(y, f(x)) = (y - f(x))^2 \]

\[L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2 \]

\[= (r_{im} - \beta b(x_i; \gamma))^2, \quad r_{im} = y_i - f_{m-1}(x_i) \]

Efficient: No harder than learning regression trees!
Forward Stagewise Additive models

\[b(x, \gamma) \text{ is a function with parameters } \gamma \]

Examples:

\[b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}} \]

\[b(x, \gamma) = \gamma_1 1\{x_3 \leq \gamma_2\} \]

Algorithm 10.2 Forward Stagewise Additive Modeling.

1. Initialize \(f_0(x) = 0 \).
2. For \(m = 1 \) to \(M \):

 (a) Compute

 \[
 (\beta_m, \gamma_m) = \arg \min_{\beta, \gamma} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).
 \]

 (b) Set \(f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m) \).

Idea: greedily add one function at a time

Boosted Logistic Trees:

\[
L(y, f(x)) = y \log(f(x)) + (1 - y) \log(1 - f(x))
\]

\(b(x, \gamma) \): regression trees

Computationally hard to update
Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy? Huber?

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize $f_0(x) = \arg \min_\gamma \sum_{i=1}^{N} L(y_i, \gamma)$.
2. For $m = 1$ to M:
 (a) For $i = 1, 2, \ldots, N$ compute
 $$r_{im} = - \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f=f_{m-1}}.$$
 (b) Fit a regression tree to the targets r_{im} giving terminal regions R_{jm}, $j = 1, 2, \ldots, J_m$.
 (c) For $j = 1, 2, \ldots, J_m$ compute
 $$\gamma_{jm} = \arg \min_\gamma \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$
 (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
3. Output $\hat{f}(x) = f_M(x)$.

XGBoost

LS fit regression tree to n-dimensional gradient, take a step in that direction
Least squares, 0/1 loss easy. But what about cross entropy? Huber?

AdaBoost uses 0/1 loss, all other trees are minimizing binomial deviance
Additive models

• Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
Additive models

• Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.

• Computationally efficient with “weak” learners. But can also use trees! Boosting can scale.

• Kind of like sparsity?
Additive models

• Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.

• Computationally efficient with “weak” learners. But can also use trees! Boosting can scale.

• Kind of like sparsity?

• Gradient boosting generalization with good software packages (e.g., XGBoost). Effective on Kaggle

• Robust to overfitting and can be dealt with with “shrinkage” and “sampling”
Bagging versus Boosting

- Bagging *averages* many low-bias, lightly dependent classifiers to reduce the variance.
- Boosting *learns* linear combination of high-bias, highly dependent classifiers to reduce error.
- Empirically, boosting appears to outperform bagging.