• Project feedback

As stated in the project description and multiple times in class:
 - You must have data at the time of the proposal.
 - The project must contain real data (not just synthetic).
 - 1 page maximum

Use spell check.
Clearly define metrics that will drive your development.
Please submit a proposal per person (for grading). It won't be marked late, obviously, just for book keeping.
If you have a partner, compare notes on feedback (usually only gave it once)
Some data, Bayes Classifier

Training data:
- True label: +1
- True label: -1

Optimal “Bayes” classifier:

\[\mathbb{P}(Y = 1|X = x) = \frac{1}{2} \]

Predicted label: +1
Predicted label: -1

Figures stolen from Hastie et al
Linear Decision Boundary

Training data:
- True label: +1
- True label: -1

Learned:
- Linear Decision boundary
 \[x^T w + b = 0 \]
- Predicted label: +1
- Predicted label: -1

Figures stolen from Hastie et al
15 Nearest Neighbor Boundary

Training data:
- True label: +1
- True label: -1

Learned:
- 15 nearest neighbor decision boundary (majority vote)
- Predicted label: +1
- Predicted label: -1
1 Nearest Neighbor Boundary

Training data:
- True label: +1
- True label: -1

Learned:
- 1 nearest neighbor decision boundary (majority vote)
 - Predicted label: +1
 - Predicted label: -1
k-Nearest Neighbor Error

Bias-Variance tradeoff

As $k \to \infty$?
- Bias:
- Variance:

As $k \to 1$?
- Bias:
- Variance:
1 nearest neighbor guarantee

\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, y_i \in \{1, \ldots, k\}

As \(n \to \infty\), assume the \(x_i\)'s become dense in \(\mathbb{R}^d\)

Note: any \(x_a \in \mathbb{R}^d\) has the same label distribution as \(x_b\) with \(b = 1NN(a)\)

If \(p_\ell = \mathbb{P}(Y_a = \ell) = \mathbb{P}(Y_b = \ell)\) and \(\ell^* = \arg \max_{\ell=1,\ldots,k} p_\ell\) then

\[
\text{Bates error} = 1 - p_{\ell^*}
\]

1-nearest neighbor error \(= \mathbb{P}(Y_a \neq Y_b) = \sum_{\ell=1}^k \mathbb{P}(Y_a = \ell, Y_b \neq \ell)\)

\[
= \sum_{\ell=1}^k p_\ell(1 - p_\ell) \leq 2(1 - p_{\ell^*}) - \frac{k}{k-1}(1 - p_{\ell^*})^2
\]

As \(x \to \infty\), then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]
Curse of dimensionality Ex. 1

X is uniformly distributed over $[0, 1]^p$. What is $\mathbb{P}(X \in [0, r]^p)$?
Curse of dimensionality Ex. 2

\(\{X_i\}_{i=1}^n \) are uniformly distributed over \([-0.5, 0.5]^p\).

What is the median distance from a point at origin to its 1NN?
Nearest neighbor regression

\[\{(x_i, y_i)\}_{i=1}^n \]

\[N_k(x_0) = k \text{-nearest neighbors of } x_0 \]

\[f(x_0) = \sum_{x_i \in N_k(x_0)} \frac{1}{k} y_i \]

\[\hat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)} \]

\[\hat{f}(x_0) = b(x_0) + w(x_0)^T x_0 \]

\[w(x_0), b(x_0) = \arg\min_{w, b} \sum_{i=1}^n K(x_0, x_i)(y_i - (b + w^T x_i))^2 \]

Local Linear Regression
Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, “local methods” have strong, simple theoretical guarantees. With not a lot of data, neighborhoods aren’t “local” and methods suffer.
Kernels

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Machine Learning Problems

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.

Hinge Loss: \(\ell_i(w) = \max\{0, 1 - y_i x_i^T w\} \)

Logistic Loss: \(\ell_i(w) = \log(1 + \exp(-y_i x_i^T w)) \)

Squared error Loss: \(\ell_i(w) = (y_i - x_i^T w)^2 \)

All in terms of inner products! Even nearest neighbor can use inner products!
What if the data is not linearly separable?

Use features of features of features of features….

Feature space can get really large really quickly!
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \]

\[d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2 \]
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \]

\(d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2 \)

\(d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2 \)
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \]

\[d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2 \]

\[d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2 \]

\[= (\langle u, v \rangle)^2 \]

General \(d \):

\[d \text{-nomials } (\langle u, v \rangle)^d \]

Dimension of \(\phi(u) \) is roughly \(p^d \) if \(u \in \mathbb{R}^p \)
Kernel Trick

\[K(x_i, x_j) = K(x_j, x_i) \]

\[\hat{w} = \arg \min_w \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda \|w\|^2 \]

There exists an \(\alpha \in \mathbb{R}^n \): \(\hat{w} = \sum_{i=1}^{n} \alpha_i x_i \)

Why?

\[\hat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle \frac{K(x_i, x_j)}{K_{i,i}} \frac{K(x_j, x_i)}{K_{i,j}} \]

\[\text{argmin}_{\alpha} \] = \(\|y - K\alpha\|_2^2 + \lambda \alpha^T K\alpha \)
Kernel Trick

\[\hat{w} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda \|w\|_w^2 \]

There exists an \(\alpha \in \mathbb{R}^n \): \(\hat{w} = \sum_{i=1}^n \alpha_i x_i \)

\[\hat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^n (y_i - \sum_{j=1}^n \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \langle x_i, x_j \rangle \]

\[= \arg \min_{\alpha} \sum_{i=1}^n (y_i - \sum_{j=1}^n \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j) \]

\[= \arg \min_{\alpha} \|y - K\alpha\|^2 + \lambda \alpha^T K\alpha \]

\[K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle \]
Why regularization?

Typically, $\mathbf{K} > 0$. What if $\lambda = 0$?

$$\hat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda\alpha^T\mathbf{K}\alpha$$

$$= \mathbf{K}^{-1}\mathbf{y}$$

$$= (\mathbf{K} + \lambda\mathbf{I})^{-1}\mathbf{y}$$
Why regularization?

Typically, \(K > 0 \). What if \(\lambda = 0 \)?

\[
\hat{\alpha} = \arg \min_{\alpha} ||y - K\alpha||_2^2 + \lambda\alpha^T K\alpha
\]

Unregularized kernel least squares can (over) fit any data!

\[
\hat{\alpha} = K^{-1}y
\]
Common kernels

- Polynomials of degree exactly d
 \[K(u, v) = (u \cdot v)^d \]
- Polynomials of degree up to d
 \[K(u, v) = (u \cdot v + 1)^d \]
- Gaussian (squared exponential) kernel
 \[K(u, v) = \exp \left(- \frac{||u - v||^2}{2\sigma^2} \right) \]
- Sigmoid
 \[K(u, v) = \tanh(\eta u \cdot v + \nu) \]
Mercer’s Theorem

- When do we have a valid Kernel $K(x,x')$?
- Definition 1: when it is an inner product

- Mercer’s Theorem:
 - $K(x,x')$ is a valid kernel if and only if K is a positive semi-definite.
 - PSD in the following sense:

\[
\int_{x,x'} h(x) K(x,x') h(x') dx dx' \geq 0 \quad \forall h: \mathbb{R}^d \rightarrow \mathbb{R}, \int_x |h(x)|^2 dx \leq \infty
\]
RBF Kernel

\[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]

- Note that this is like weighting “bumps” on each point like kernel smoothing but now we learn the weights.
RBF Kernel

\[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]

The bandwidth sigma has an enormous effect on fit:

\[
\sigma = 10^{-2} \quad \lambda = 10^{-4} \\
\sigma = 10^{-1} \quad \lambda = 10^{-4} \\
\sigma = 10^{-0} \quad \lambda = 10^{-4}
\]

\[\hat{f}(x) = \sum_{i=1}^{n} \hat{\alpha}_i K(x_i, x) \]
RBF Kernel

\[K(u, v) = \exp \left(-\frac{||u - v||_2^2}{2\sigma^2} \right) \]

The bandwidth sigma has an enormous effect on fit:

- \(\sigma = 10^{-2} \quad \lambda = 10^{-4} \)
- \(\sigma = 10^{-1} \quad \lambda = 10^{-4} \)
- \(\sigma = 10^{-0} \quad \lambda = 10^{-4} \)
- \(\sigma = 10^{-3} \quad \lambda = 10^{-4} \)
- \(\sigma = 10^{-1} \quad \lambda = 10^{-0} \)

\[\chi = \frac{1}{\alpha} \|K\alpha - y\|_2^2 + \lambda \alpha^T K \alpha \]

\[\hat{f}(x) = \sum_{i=1}^{n} \tilde{\alpha}_i K(x_i, x) \]

©2017 Kevin Jamieson
RBF Classification

\[w = \sum \alpha_i x_i \]

\[\hat{w} = \sum_{i=1}^{n} \max\{0, 1 - y_i (b + x_i^T w)\} + \lambda \|w\|^2_2 \]

\[\min_{\alpha, b} \sum_{i=1}^{n} \max\{0, 1 - y_i (b + \sum_{j=1}^{n} \alpha_j \langle x_i, x_j \rangle)\} + \lambda \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle \]

\[\max\{0, 1 - y_i (b + \sum_{j=1}^{n} \alpha_j K_{i,j})\} + \lambda \sum \alpha_i \]

\[K_{i,j} = K(x_i, x_j) = e^{-\frac{1}{2}d_i^2 d_j^2} \]
RBF kernel Secretly random features

\[
2 \cos(\alpha) \cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)
\]

\[
e^{j\theta} = \cos(\theta) + j\sin(\theta)
\]

\[
\begin{align*}
R.U. X & \quad \mathbb{I}[e^{\lambda x}] \\
b & \sim \text{uniform}(0, \pi) \\
\phi(x) &= \sqrt{2} \cos(w^T x + b) \\
\mathbb{E}_{w,b}[\phi(x)^T \phi(y)] &= \mathbb{E}\left[2 \cos(w^T x + b) \cos(w^T y + b)\right] \\
&= \mathbb{E}\left[\cos(w^T (x+y) + 2b) + \cos(w^T (x-y))\right] \\
&= \mathbb{E}\left[\frac{1}{2} (e^{jw^T (x-y)} + e^{-jw^T (x-y)})\right]
\end{align*}
\]
RBF kernel Secretly random features

\[2 \cos(\alpha) \cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta) \]
\[e^{jz} = \cos(z) + \sin(z) \]

\[b \sim \text{uniform}(0, \pi) \quad w \sim \mathcal{N}(0, 2\gamma) \]

\[\phi(x) = \sqrt{2} \cos(w^T x + b) \]

\[\mathbb{E}_{w,b}[\phi(x)^T \phi(y)] = e^{-\gamma||x-y||_2^2} \]
[Rahimi, Recht 2007]
String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

\[
x_1 = \text{IPTSALVKETLALLSTHRTLLIANETLRI} \ldots \text{QGTV}
\]
\[
x_2 = \text{ERLFKNLSLIKKYIDGQKKKC} \ldots \text{GVMNTEWI}
\]
\[
\text{PHRRDLCSRLSIWLARKISDLTALT} \ldots \text{QAYRTFHVLLA}
\]
\[
\text{RLLEDQQVHFTPTEGD} \ldots \text{EILMILEYKIPRNEADGMLEKK}
\]
\[
\text{LWLKLQLQELSQWTVRSIHDLRFISSHQTGIP}
\]

All subsequences of length 3 (of possible 20 amino acids) \(20^3 = 8,000\)

\[
h_{LQE}^3(x_1) = 1 \text{ and } h_{LQE}^3(x_2) = 2.
\]
Downside of Kernels
- Cannot bias towards sparse solutions

Trees

Machine Learning – CSE546
Kevin Jamieson
University of Washington
October 26, 2017

©2017 Kevin Jamieson
Trees

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]

Build a binary tree, splitting along axes.
Trees

Build a binary tree, splitting along axes

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]

How do you split?

Greedy

When do you stop?

When pts in leaves ≤ m

m could be 1
Learning decision trees

- Start from empty decision tree
- Split on **next best attribute (feature)**
 - Use, for example, information gain to select attribute
 - Split on

 \[
 \arg \max_i IG(X_i) = \arg \max_i H(Y) - H(Y \mid X_i)
 \]

- Recurse
- Prune

\[
f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).
\]
Trees

- Trees
 - have low bias, high variance
 - deal with categorical variables well
 - intuitive, interpretable
 - good software exists
 - Some theoretical guarantees

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]
Random Forests

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Random Forests

Tree methods have **low bias** but **high variance**.

One way to reduce variance is to construct a lot of “lightly correlated” trees and average them:

“Bagging:” Bootstrap aggregating
Random Forrests

Algorithm 15.1 Random Forest for Regression or Classification.

1. For $b = 1$ to B:

 (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.

 (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

 i. Select m variables at random from the p variables.

 ii. Pick the best variable/split-point among the m.

 iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_{1}^{B}$.

To make a prediction at a new point x:

Regression: $\hat{f}_r^B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = \text{majority vote} \{\hat{C}_b(x)\}_{1}^{B}$.

$m \sim \sqrt{p}, p/3$
The Kinect pose estimation pipeline

capture depth image & remove bg

infer body parts per pixel

cluster pixels to hypothesize body joint positions

fit model & track skeleton

Random Forrest

Random forest

3 nearest neighbor
Given random variables Y_1, Y_2, \ldots, Y_B with

$$E[Y_i] = y, \ E[(Y_i - y)^2] = \sigma^2, \ E[(Y_i - y)(Y_j - y)] = \rho \sigma^2$$

The Y_i's are identically distributed but not independent

$$E[(\frac{1}{B} \sum_{i=1}^{B} Y_i - y)^2] = \frac{1}{B^2} \left(\sum_{i=1}^{B} (Y_i - y)^2 + \sum_{i \neq j} (Y_i - y)(Y_j - y) \right)$$

$$= \frac{1}{B^2} \left(\sum Y_i^2 + \sum_{i \neq j} \rho \sigma^2 \right)$$

$$= \frac{1}{B} \sigma^2 + \frac{B(B-1)}{B^2} \rho \sigma^2$$

$$\approx \frac{\sigma^2}{B} + \rho \sigma^2$$
Random Forests

• Random Forests
 • have low bias, low variance
 • deal with categorial variables well
 • not that intuitive or interpretable
 • good software exists
 • Some theoretical guarantees
 • Can still overfit
Random Forests

- Random Forests
 - have low bias, low variance
 - deal with categorical variables well
 - not that intuitive or interpretable
 - good software exists
 - Some theoretical guarantees
 - Can still overfit