Announcements

]
* Project feedback

As stated in the project description and multiple times in class:
- You must have data at the time of the proposal.
- The project must contain real data (not just synthetic).
- 1 page maximum

Use spell check.

Clearly define metrics that will drive your development.

Please submit a proposal per person (for grading). It won’t be marked late, obviously, just for book keeping.
If you have a partner, compare notes on feedback (usually only gave it once)
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Recap: Nearest

Neighbor
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Some data, Bayes Classifier
" JEEE—
/’ Training data:

True label: +1

O True label: -1

/ '\Optlmal ‘Bayes” classifier:

1

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al
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Linear Decision Boundary
"
Training data:

True label: +1

O True label: -1

g

Learned:
Linear Decision boundary
tTw+b=0

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al
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15 Nearest Neighbor Boundary
" JE—
Training data:

True label: +1

s O True label: -1

Learned:

15 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

©2017 Kevin Jamieson 5



1 Nearest Neighbor Boundary

Training data:

True label: +1

O True label: -1

'\Learned:

1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

©2017 Kevin Jamieson 6



k-Nearest Neighbor Error
" JEEE—

k = Number of Nearest Neighbors

151 101 69 45 31 21 11 7 5 3 1 . .
1 11 1 111 11 1 1 1 BlaS-Val’IanCe tradeOff
§ Linear
As k->infinity?
-
8 - : Bias:
5 Best possible i
T Variance:
b4 o
2
2 As k->17?
o
Bias:
e | .
s Train ‘
Test )
—— Bayes . Variance:
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1 nearest neighbor guarantee

" J———
{(zi,yi)Hiz1 ;€ Rdayi e{l,..., k}
As n — oo, assume the x;’s become dense in R?

Note: any z, € R? has the same label distribution as ; with b = 1N N(a)
Ifpo=P(Y,=4¢)=P(Y, =/) and {* = arg max py then

.....

Bates error = 1 — py+
1-nearest neighbor error = ]P’(Y +Y,) = ZIP’(Ya =0,Y, £ /)

(=1

k
—ZW 1 —pg) < 1—P£*)—m(1—pe )2

As x->infinity, then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]
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Curse of dimensionality Ex. 1
" EEE———

C
-

Unit Cube — p=10
o y - p=2
I w0 ‘,"
8 o |’ ~ p=1
e y
s
2 /.
o 31|/,
// /
[ /
o~ f //
=) /
1 .
- o
! S 1
Neighborhood — 02 0.4 0.6
side Iength r Fraction of Volume

X is uniformly distributed over [0, 1]?. What is P(X € [0, r]P)?

©2017 Kevin Jamieson 9



Curse of dimensionality Ex. 2
" S

{X;}?_; are uniformly distributed over [—.5, .5]P.

N=1,000
N=100 _/N=10,000

.
Median Radius

00 01 02 03 04 05 08

0 5 10 15

Dimension

What is the median distance from a point at origin to its 1NN?

©2017 Kevin Jamieson 10



Nearest neighbor regression

" S
(@i, vi)})im

o S llen) , sapllE) _F(zo)
%0 /r// : ! / = \\"\.
F’ - £ 4 \\\ \\
\\ \\\ Y \
\\ X 7 .
. . o \ ‘
04 iﬂ 08 08 0 00 02 04  TQ o6
Ni(zo) = k-nearest neighbors of x
~ 1 Iy _ Z?: K(:UO’ x’b)yz Yy T
f(zo) = xie%;(xo)g Yi f(zo) = Zil K (z0, 1) f([l?o) = b(lEo) + ’LU(Q?()) iy
mn
w(xg), b(xg) = arg Ifuligl K(xo,2:)(y; — (b+w!x;))?
=1

Local Linear Regression

Kevin Jamieson 2017 11



Nearest Neighbor Overview
" JEE

Very simple to explain and implement

No training! But finding nearest neighbors in large dataset
at test can be computationally demanding (kD-trees help)

You can use other forms of distance (not just Euclidean)

Smoothing with Kernels and local linear regression can
improve performance (at the cost of higher variance)

With a lot of data, “local methods” have strong, simple
theoretical guarantees. With not a lot of data,
neighborhoods aren’t “local” and methods suffer.

©2017 Kevin Jamieson 12



Kernels

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 26, 2017
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= Hinge Loss
Binomial Deviance
Squarod Emor
— Class Mubor

Machine Learning Problems
" S

= Have a bunch of iid data of the form:

[~]
-4

00 05 10 15 20 25 30

{(x’wyz) ?:1 €T; € Rd Yi € R

= [earning a model's parameters:
: l;
Each /;(w) is convex. 2 tiw)

Hinge Loss: £;(w) = max{0,1 — y;z} w}

Logistic Loss: £;(w) = log(1 + exp(—y; z} w))

Squared error Loss: £;(w) = (y; — xlw)?

All in terms of inner products! Even nearest neighbor can use inner products!

©Kevin Jamieson 2017 14



What if the data is not linearly separable?
"

Use features of features
. of features of features....

T o(z) : RY — RP

©2017 Kevin Jamieson



Dot-product of polynomials

" JE—
d(u) - d(v) = polynomials of degree exactly d

(0]
U2

d=150(u) = (12 (6(.0(0)) = wavr + v

©2017 Kevin Jamieson



Dot-product of polynomials

" J——
d(u) - d(v) = polynomials of degree exactly d

] (6(u), 6(0)) = urvr + uzvs

d=2:¢(u) = (p(u), p(v)) = uivT + usvs + 2uiUsv1 Vs

©2017 Kevin Jamieson



Dot-product of polynomials

" JE——
d(u) - d(v) = polynomials of degree exactly d

] (6(u), 6(0)) = urvr + uzvs

d=2:¢(u) = (p(u), p(v)) = uivT + usvs + 2uiUsv1 Vs

eeeeeeeeeeeeeeeeee



Kernel Trick
" S

ﬁ?zargmmz —xiw)? + M|w||?

There exists an v € R™: w = Z T4 Why?
i=1

a = arg moin Z(yz — Z (T, ;) + )\Z Z o (x4, 25)
i=1 j=1

i=1 j=1

©2017 Kevin Jamieson
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Kernel Trick
S

{Ezargmmz —xiw)? + M|w||?

There exists an v € R™: w = Z T4 Why?
i=1

a = arg moin Z(yz — Z (T, ;) + )\Z Z o (x4, 25)
i=1 j=1

1= 1] 1
n n
= arg min g (yi — g o K(zi,25))* + A g g ;o K (4, 25)
(8
i=1 j=1 =1 5=1

= arg min ||y — Ka/||3 + Ao’ Ka
(87

K(xi,x5) = (o(xi), o(x))

©2017 Kevin Jamieson 20



Why regularization?
"
Typically, K > 0.  What if A = 07

a = argmin ||y — Kal|5 + Ao’ Ko
87

©2017 Kevin Jamieson
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Why regularization?
" JE
Typically, K > 0.  What if A = 07

a = argmin ||y — Kal|5 + Ao’ Ko
87

Unregularized kernel least squares can (over) fit any data!

a=Kly

©2017 Kevin Jamieson 22



Common kernels
"
= Polynomials of degree exactly d
K(u,v) = (u-v)?
= Polynomials of degree up to d
K(,v)=(u-v+1)4
= Gaussian (squared exponential) kernel
K(u,v) =exp (— lu - VH%)
202
= Sigmoid
K(u,v) = tanh(nu-v 4+ v)

©2017 Kevin Jamieson
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Mercer’'s Theorem
" A

= When do we have a valid Kernel K(x,x')?
= Definition 1: when it is an inner product

= Mercer’s Theorem:
K(x,X’) is a valid kernel if and only if K is a positive
semi-definite.
PSD in the following sense:

/ h(z)K(z, 2" )h(z)dxde’ >0 Vh:RY — R,/ |h(z)|*dx < oo

©2017 Kevin Jamieson
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RBF Kernel K v)=exp _llu2—0_;||2
SN

= Note that this is like weighting “bumps” on each point like kernel
smoothing but now we learn the weights

Radial Basis Functions f(z) = ap + L, a; K(z,z4)
- 4 -
— o
g - —
N - X7 § 8 \
g = o] —
=~ 9 & s h ——
< .
o
o -
L L L. 1.1 1 | | (? 1 1 1 L1 1 L 1
2 ' 0 1 2 2 | 0 . 2
T T

©2017 Kevin Jamieson
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RBF Kernel K(u,v) =exp <_ ||u2—02v||2>
" A

The bandwidth sigma has an enormous effect on fit:

— — _ — — —4
c=10"2 A=10"" c=10"' A =10"" c=10""A=10
' True flx) B : True flx) ' ' True fix)
Fitted Ax) . Fitted Ax) ) Fitted flx)
+  Data ' R & '.. « Data ) " «  Data
n
flx) =) a;K(z; )
=1

©2017 Kevin Jamieson 26



RBF Kernel K(u,v) =exp <_ ||u2—02v||2>
" A

The bandwidth sigma has an enormous effect on fit:
_ _ — — —4
c=10"2 A=10"" c=10"' A =10"" c=10""A=10
i True Alx) : True flx) ! True fx)
Fitted Kx) ) i Fitted Ax) . ) Fitted flx)
+  Data ' R - N + Deta ) ' . «  Data
c=103X1=10""1 c=10"t A=107"°
True fix) h . True fix)
Fitted fix) Fitted fix)
. Data . Data
mn
flx) =) a;K(zix)
1=1
27
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RBF Classification

i = ZmaX{O, 1—y;(b+ 2] w)} + Nw||3
i=1

mmZmaX{O 1 —y; b—|—§:o¢7 Ti, i)} + A Z Qo (X, x5)

1,7=1

©2017 Kevin Jamieson
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RBF kernel Secretly random

f t I 2 cos(a) cos(B) = cos(a + B) + cos(a — )
- %Sin(@

b ~ uniform(0, 7) w ~ N(0,27)

o(z) = V2 cos(wl z + b)
Eub[6(2)" d(y)] =

©2017 Kevin Jamieson



RBF kernel Secretly random

f t I 2 cos(a) cos(B) = cos(a + B) + cos(a — )
- %Sin(@

b ~ uniform(0, 7) w ~ N(0,27)

o(z) = V2 cos(wl z + b)

Euwslo(x) o) = e YIz—vll3 [Rahimi, Recht 2007]

©2017 Kevin Jamieson



String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

x1

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK
LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) 203 =8,000
hl.(x1) = 1and k) (x2) = 2.

LQE

©2017 Kevin Jamieson 31



Trees

Machine Learning — CSE546
Kevin Jamieson

University of Washington
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Trees

"
Build a binary tree, splitting along axes

M
f(@) =) eml(z € Rm).

X1<y
}

Rs

X2 <t X <t3 Ry ts
R3
X2 <ty t2 R4
Ri R: Rs |/—‘
Ry
R4 Rs i t3

©2017 Kevin Jamieson



Trees

M Build a binary tree, splitting along axes
f(@)=) cml(z € Rp).
m=1

How do you split?

Ri Rz Rs When do you stop?

©2017 Kevin Jamieson



Learning decision trees
" J———
= Start from empty decision tree

= Split on next best attribute (feature)
Use, for example, information gain to select attribute

Spliton argmax IG(X;) = argmax H(Y) — H(Y | X;)
1 1

= Recurse

= Prune

M

X <t f(z) = Z eml(z € Rpy,).

m=1




Trees

|
o e Trees
f(@) =) eml(z € Rp).  have low bias, high variance
m=1

 deal with categorial variables
well

X<t * intuitive, interpretable

» good software exists

« Some theoretical guarantees

©2017 Kevin Jamieson 36



Random Forests

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 26, 2017
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Random Forests

"
Tree methods have low bias but high variance.
One way to reduce variance is to

construct a lot of “lightly correlated”
trees and average them:

“Bagging:” Bootstrap aggregating -

©2017 Kevin Jamieson
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Random Forrests

"
Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n;,i, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}7.
m~sqrt(p),p/3

To make a prediction at a new point z:

Regression: fB(z) = L S0, Ty(z).

Classification: Let C'b(z) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(z)}P.

©2017 Kevin Jamieson 39



The Kinect pose estimation pipeline

capture
depth image &

remove bg i

A

infer ,
body parts “ ‘
per pixel cluster pixels to
_ hypothesize

https://www.microsoft.com/en-us/ body joint :
research/wp-content/uploads/2016/02/ y fit model &

CVPR20201120-20Final20Video.mp4 positions track skeleton


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CVPR20201120-20Final20Video.mp4

Random Forrest
'—

Random forrest

Training Error: 0.000 1 %
TestError: 0238 !
Bayes Error:  0.210 0

©2017 Kevin Jamieson

3 nearest neighbor

Training Error: 0,130 2 %
Test Error:  0.242
Bayes Error:  0.210 0




Random Forrest

Given random variables Y7, Y5, ..., Ys with
E[Yi] =y, E[(Y; — y)?] = 0%, E[(Y; — y)(Y} — y)] = po?

The Yi's are identically distributed but not independent

Bl(5 > Y- )% =

©2017 Kevin Jamieson

42



Random Forests

"
]
 Random Forests
 have low bias, low variance
 deal with categorial variables well
* not that intuitive or interpretable
» good software exists
« Some theoretical guarantees

e Can still overfit

©2017 Kevin Jamieson
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Random Forests

"
]
 Random Forests
 have low bias, low variance
 deal with categorial variables well
* not that intuitive or interpretable
» good software exists
« Some theoretical guarantees

e Can still overfit

©2017 Kevin Jamieson
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