• Project feedback

As stated in the project description and multiple times in class:
- You must have data at the time of the proposal.
- The project must contain real data (not just synthetic).
- 1 page maximum

Use spell check.
Clearly define metrics that will drive your development.
Please submit a proposal per person (for grading). It won’t be marked late, obviously, just for book keeping.
If you have a partner, compare notes on feedback (usually only gave it once)
Recap: Nearest Neighbor

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Some data, Bayes Classifier

Training data:
- True label: +1
- True label: -1

Optimal “Bayes” classifier:

\[P(Y = 1 | X = x) = \frac{1}{2} \]

- Predicted label: +1
- Predicted label: -1

Figures stolen from Hastie et al
Linear Decision Boundary

Training data:
- True label: +1
- True label: -1

Learned:
- Linear Decision boundary
 \[x^T w + b = 0 \]
- Predicted label: +1
- Predicted label: -1

Figures stolen from Hastie et al
15 Nearest Neighbor Boundary

Training data:
- True label: +1
- True label: -1

Learned:
- 15 nearest neighbor decision boundary (majority vote)
 - Predicted label: +1
 - Predicted label: -1
1 Nearest Neighbor Boundary

Training data:
- True label: +1
- True label: -1

Learned:
- 1 nearest neighbor decision boundary (majority vote)

Predicted label: +1
Predicted label: -1
k-Nearest Neighbor Error

Bias-Variance tradeoff

As $k \to \infty$?
- Bias:
- Variance:

As $k \to 1$?
- Bias:
- Variance:
1 nearest neighbor guarantee

\[
\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, y_i \in \{1, \ldots, k\}
\]

As \(n \to \infty \), assume the \(x_i \)'s become dense in \(\mathbb{R}^d \)

Note: any \(x_a \in \mathbb{R}^d \) has the same label distribution as \(x_b \) with \(b = 1NN(a) \)

If \(p_\ell = \mathbb{P}(Y_a = \ell) = \mathbb{P}(Y_b = \ell) \) and \(\ell^* = \arg \max_{\ell=1,\ldots,k} p_\ell \) then

Bates error = \(1 - p_{\ell^*} \)

1-nearest neighbor error = \(\mathbb{P}(Y_a \neq Y_b) = \sum_{\ell=1}^k \mathbb{P}(Y_a = \ell, Y_b \neq \ell) \)

= \(\sum_{\ell=1}^k p_\ell (1 - p_\ell) \sqrt[2]{1 - p_{\ell^*}} - \frac{k}{k - 1} (1 - p_{\ell^*})^2 \)

As \(x \to \infty \), then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]
Curse of dimensionality Ex. 1

X is uniformly distributed over $[0, 1]^p$. What is $\Pr(X \in [0, r]^p)$?
Curse of dimensionality Ex. 2

\[
\{X_i\}_{i=1}^{n} \text{ are uniformly distributed over } [-0.5, 0.5]^p.
\]

What is the median distance from a point at origin to its 1NN?
Nearest neighbor regression

\[
\{(x_i, y_i)\}_{i=1}^n
\]

\[N_k(x_0) = k\text{-nearest neighbors of } x_0\]

\[\hat{f}(x_0) = \sum_{x_i \in N_k(x_0)} \frac{1}{k} y_i\]

\[\hat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i)y_i}{\sum_{i=1}^n K(x_0, x_i)}\]

\[\hat{f}(x_0) = b(x_0) + w(x_0)^T x_0\]

\[w(x_0), b(x_0) = \arg \min_{w, b} \sum_{i=1}^n K(x_0, x_i)(y_i - (b + w^T x_i))^2\]

Local Linear Regression
Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, “local methods” have strong, simple theoretical guarantees. With not a lot of data, neighborhoods aren’t “local” and methods suffer.
Kernels

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Machine Learning Problems

- Have a bunch of iid data of the form:
 \[\{(x_i, y_i)\}_{i=1}^{n} \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R} \]

- Learning a model’s parameters:
 Each \(\ell_i(w) \) is convex.
 \[\sum_{i=1}^{n} \ell_i(w) \]

 - Hinge Loss: \(\ell_i(w) = \max\{0, 1 - y_ix_i^Tw\} \)
 - Logistic Loss: \(\ell_i(w) = \log(1 + \exp(-y_ix_i^Tw)) \)
 - Squared error Loss: \(\ell_i(w) = (y_i - x_i^Tw)^2 \)

All in terms of inner products! Even nearest neighbor can use inner products!
What if the data is not linearly separable?

Use features of features of features of features....

\[\phi(x) : \mathbb{R}^d \rightarrow \mathbb{R}^p \]

Feature space can get really large really quickly!
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \]

\[d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2 \]
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \]

\[d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2 \]

\[d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_1 u_2 \\ u_2^2 \\ u_1 u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2 \]
Dot-product of polynomials

\(\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \)

\[d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2 \]

\[d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2 \]

General \(d \) :

Dimension of \(\phi(u) \) is roughly \(p^d \) if \(u \in \mathbb{R}^p \)
Kernel Trick

\[\hat{w} = \arg \min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||^2_w \]

There exists an \(\alpha \in \mathbb{R}^n \):
\[\hat{w} = \sum_{i=1}^{n} \alpha_i x_i \]
Why?

\[\hat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle \]
Kernel Trick

\[\hat{w} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda \|w\|_w^2 \]

There exists an \(\alpha \in \mathbb{R}^n \): \(\hat{w} = \sum_{i=1}^n \alpha_i x_i \) Why?

\[\hat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^n (y_i - \sum_{j=1}^n \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \langle x_i, x_j \rangle \]

\[= \arg \min_{\alpha} \sum_{i=1}^n (y_i - \sum_{j=1}^n \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j) \]

\[= \arg \min_{\alpha} \|y - K\alpha\|_2^2 + \lambda \alpha^T K \alpha \]

\[K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle \]
Why regularization?

Typically, $K \succ 0$. What if $\lambda = 0$?

$$\hat{\alpha} = \arg\min_{\alpha} \|y - K\alpha\|_2^2 + \lambda \alpha^T K \alpha$$
Why regularization?

Typically, $\mathbf{K} \succ 0$. What if $\lambda = 0$?

$$\hat{\alpha} = \arg \min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||^2_2 + \lambda\alpha^T\mathbf{K}\alpha$$

Unregularized kernel least squares can (over) fit **any data**!

$$\hat{\alpha} = \mathbf{K}^{-1}\mathbf{y}$$
Common kernels

- Polynomials of degree exactly d
 \[K(u, v) = (u \cdot v)^d \]
- Polynomials of degree up to d
 \[K(u, v) = (u \cdot v + 1)^d \]
- Gaussian (squared exponential) kernel
 \[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]
- Sigmoid
 \[K(u, v) = \tanh(\eta u \cdot v + \nu) \]
Mercer’s Theorem

- When do we have a valid Kernel $K(x,x')$?
 - Definition 1: when it is an inner product

- Mercer’s Theorem:
 - $K(x,x')$ is a valid kernel if and only if K is a positive semi-definite.
 - PSD in the following sense:

 $$
 \int_{x,x'} h(x) K(x,x') h(x') \, dx \, dx' \geq 0 \quad \forall h : \mathbb{R}^d \to \mathbb{R}, \int_x |h(x)|^2 \, dx \leq \infty
 $$
RBF Kernel

\[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]

- Note that this is like weighting “bumps” on each point like kernel smoothing but now we learn the weights.
RBF Kernel

\[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]

The bandwidth sigma has an enormous effect on fit:

- \[\sigma = 10^{-2} \quad \lambda = 10^{-4} \]
- \[\sigma = 10^{-1} \quad \lambda = 10^{-4} \]
- \[\sigma = 10^{0} \quad \lambda = 10^{-4} \]

\[\hat{f}(x) = \sum_{i=1}^{n} \hat{\alpha}_i K(x_i, x) \]
RBF Kernel

\[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]

The bandwidth sigma has an enormous effect on fit:

- \(\sigma = 10^{-2} \) \(\lambda = 10^{-4} \)
- \(\sigma = 10^{-1} \) \(\lambda = 10^{-4} \)
- \(\sigma = 10^{0} \) \(\lambda = 10^{-4} \)
- \(\sigma = 10^{-3} \) \(\lambda = 10^{-4} \)
- \(\sigma = 10^{-1} \) \(\lambda = 10^{0} \)

\[f(x) = \sum_{i=1}^{n} \hat{\alpha}_i K(x_i, x) \]
RBF Classification

\[\hat{w} = \sum_{i=1}^{n} \max\{0, 1 - y_i (b + x_i^T w)\} + \lambda \|w\|^2_2 \]

\[
\min_{\alpha, b} \sum_{i=1}^{n} \max\{0, 1 - y_i (b + \sum_{j=1}^{n} \alpha_j \langle x_i, x_j \rangle)\} + \lambda \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle
\]
RBF kernel Secretly random features

\[2 \cos(\alpha) \cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta) \]

\[e^{jz} = \cos(z) + \sin(z) \]

\[b \sim \text{uniform}(0, \pi) \quad w \sim \mathcal{N}(0, 2\gamma) \]

\[\phi(x) = \sqrt{2} \cos(w^T x + b) \]

\[\mathbb{E}_{w,b} [\phi(x)^T \phi(y)] = \]
RBF kernel Secretly random features

\[2 \cos(\alpha) \cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta) \]
\[e^{jz} = \cos(z) + \sin(z) \]

\[b \sim \text{uniform}(0, \pi) \quad w \sim \mathcal{N}(0, 2\gamma) \]

\[\phi(x) = \sqrt{2} \cos(w^T x + b) \]

\[\mathbb{E}_{w,b}[\phi(x)^T \phi(y)] = e^{-\gamma ||x-y||^2_2} \]

[Rahimi, Recht 2007]
String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

\[x_1 \]

IPTSALVKETLALLSTHRTLLIANETLRIPTVPVHKNHQLCTEIFQGIGTLESQTVQGTV
ERLFKNLSLKKYIDGQKKKCCGEERRRVNQFLDYLQEFGLGVMNTEWI

\[x_2 \]

PHRRDLCRSIWLARKIRSDLTALTESYVKHQGGLWSELTEAERLQENLQAYRTFHVLLA
RLLLEDQVHFTPEGDFHQAITHLLLOVAAFAYQIEEMLILEYKIPRNEADGMLFEKK
LWGKLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) \(20^3 = 8,000 \)

\[h_{LQE}^3(x_1) = 1 \text{ and } h_{LQE}^3(x_2) = 2. \]
Trees

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017
Trees

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]

Build a binary tree, splitting along axes.
Trees

Build a binary tree, splitting along axes

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m) \]

How do you split?

When do you stop?
Learning decision trees

- Start from empty decision tree
- Split on **next best attribute (feature)**
 - Use, for example, information gain to select attribute
 - \[\text{arg max}_i IG(X_i) = \text{arg max}_i H(Y) - H(Y | X_i) \]
- Recurse
- Prune
Trees

• Trees
 • have low bias, high variance
 • deal with categorical variables well
 • intuitive, interpretable
 • good software exists
 • Some theoretical guarantees

\[f(x) = \sum_{m=1}^{M} c_m I(x \in R_m). \]
Random Forests

Tree methods have **low bias** but **high variance**.

One way to reduce variance is to construct a lot of “lightly correlated” trees and average them:

“**Bagging:**” Bootstrap aggregating
Algorithm 15.1 Random Forest for Regression or Classification.

1. For $b = 1$ to B:

 (a) Draw a bootstrap sample Z^* of size N from the training data.

 (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

 i. Select m variables at random from the p variables.
 ii. Pick the best variable/split-point among the m.
 iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = \text{majority vote} \{\hat{C}_b(x)\}_1^B$.

$m \sim \sqrt{p}, p/3$
The Kinect pose estimation pipeline

capture depth image & remove bg

infer body parts per pixel

cluster pixels to hypothesize body joint positions

fit model & track skeleton

Random Forrest

Random forest

3 nearest neighbor
Given random variables Y_1, Y_2, \ldots, Y_B with
$\mathbb{E}[Y_i] = y$, $\mathbb{E}[(Y_i - y)^2] = \sigma^2$,
$\mathbb{E}[(Y_i - y)(Y_j - y)] = \rho \sigma^2$

The Y_i's are identically distributed but **not** independent

$$
\mathbb{E}[(\frac{1}{B} \sum_{i=1}^{B} Y_i - y)^2] =
$$
Random Forests

- Random Forests
 - have low bias, low variance
 - deal with categorical variables well
 - not that intuitive or interpretable
 - good software exists
 - Some theoretical guarantees
 - Can still overfit
Random Forests

- Random Forests
 - have low bias, low variance
 - deal with categorical variables well
 - not that intuitive or interpretable
 - good software exists
 - Some theoretical guarantees
 - Can still overfit