
Homework #3

CSE 546: Machine Learning

Prof. Kevin Jamieson

Due: 11/21 11:59 PM

1 Analysis of Variance

1. [7 points] For i = 1, . . . , n fix xi ∈ Rd and let yi = xTi w∗ + εi where εi
i.i.d.∼ N (0, σ2). Let ŵ =

arg minw∈Rd

∑n
i=1(yi − xTi w)2. In the last homework you showed that Eε[||ŵ − w∗||22] = σ2Tr((XTX)−1).

In this problem, we will study in what directions ŵ is most accurate.
Let VΛVT be the eigenvalue decomposition of XTX such that VTV = I and Λ is a matrix of all zeros with
(λ1, . . . , λd) on the diagonal. Assume λi > 0 for all i (and hence, Λ−1 exists).

a. The covariance matrix of ŵ is defined as Σ = E[(ŵ − E[ŵ])(ŵ − E[ŵ])T]. Argue that ŵ ∼ N (w∗,Σ) using
properties about the transformation of Gaussian random variables as a given.

b. Show that Σ = σ2(XTX)−1

c. What is Σ in terms of V,Λ, σ2?

d. What is the distribution of Λ1/2VT (ŵ − w∗)? What is E[||Λ1/2VT (ŵ − w∗)||22]?

e. Define the confidence ellipsoid as E(A) = {u ∈ Rd :
√
uTAu ≤ 1}. Argue that ||Λ1/2VT (ŵ − w∗)||22 ≤ ν2

if and only if ŵ − w∗ ∈ νE(XTX). Here, for any A ⊆ Rd and c ≥ 0 we define cA := {ca : a ∈ A}.

f. Let v1 =

[
3/5
4/5

]
and v2 =

[
−4/5
3/5

]
, V = [v1, v2], Λ = diag(λ1, λ2), σ2 = 1, n = 100. Different values of w∗

and λ1, λ2 are given below. For each: draw x̃i ∼ N (0, I2) for i = 1, . . . , n, find an A ∈ Rd×d, b ∈ Rd such
that zi = Ax̃i + b,

∑n
i=1 zi = 0, and

∑n
i=1 ziz

T
i = VΛVT . Plot zi for i = 1, . . . , n as well as the boundary

of the confidence ellipsiod centered at w∗ (Hint: consider u = VΛ−1/2[cos(θ), sin(θ)]T for θ ∈ [0, 2π]).

(a) w∗ = [3, 4]T , λ1 = 1, λ2 = 1

(b) w∗ = [3, 4]T , λ1 = 8, λ2 = 1

(c) w∗ = [3, 4]T , λ1 = 1, λ2 = 8

(d) w∗ = [−4, 3]T , λ1 = 8, λ2 = 1

(e) w∗ = [0, 4]T , λ1 = 8, λ2 = 1

Here is an example of what your figures should look like for w∗ = [2, 3]T and λ1 = 6, λ2 = 1.

1

2 Kernel Regression

2. [6 points] First let’s generate some data. Let n = 30 and f(x) = 4 sin(πx) cos(6πx2). For i = 1, . . . , n let
each xi be drawn uniformly at random on [0, 1] and yi = f(xi) + εi where εi ∼ N (0, 1). Using regularized
least-squares kernel regression, build a predictor

α̂ = minα||Kα− y||2 + λαTKα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

where Ki,j = k(xi, xj) is a kernel evaluation and λ is the regularization constant.

a. Using leave-one-out cross validation, find a good λ and hyperparameter settings for the following kernels:

• kpoly(x, z) = (1 + xT z)d where d ∈ N is a hyperparameter,

• krbf (x, z) = exp(−γ‖x− z‖2) where γ > 0 is a hyperparameter1.

Record the values of d, γ, and the λ values for both kernels.

b. For a single plot per kernel, plot the original data {(xi, yi)}ni=1, the true f(x), the f̂(x) found through
leave-one-out CV.

c. Suppose m additional samples are drawn i.i.d. the same way the first n samples were drawn. Propose a
statistical significance test to decide which learned function (which kernel) is the better fit.

d. (Extra credit: [3 points]) Using the fixed hyperparameters you found in part a, we wish to build Bootsrap

percentile confidence intervals for f̂poly(x) and f̂rbf (x) for all x ∈ [0, 1]. Use the non-parametric bootstrap
with B = 300 datasets (i.e. randomly draw with replacement n samples from {(xi, yi)}ni=1 and train an

f̂ , repeat this B times) and find 5% and 95% percentiles (see Hastie, Tibshirani, Friedman Ch. 8.2 for a
review). Plot the precentile curves on the plots from part b.

3 k-means clustering

3. [5 points] Given a dataset x1, ..., xn ∈ Rd and an integer 1 ≤ k ≤ n, recall the following k-means objective
function

min
π1,...,πk

k∑
i=1

∑
j∈πi

‖xj − µi‖22 , µi =
1

|πi|
∑
j∈πi

xj . (1)

1Given a dataset x1, . . . , xn ∈ Rd, a heuristic for choosing γ is the inverse of the median of all
(n
2

)
squared distances ||xi−xj ||22.

2

Above, {πi}ki=1 is a partition of {1, 2, ..., n}. The objective (1) is NP-hard2 to find a global minimizer of.
Nevertheless the commonly used heuristic which we discussed in lecture, known as Lloyd’s algorithm, typically
works well in practice. Implement Lloyd’s algorithm for solving the k-means objective (1). Do not use any off
the shelf implementations, such as those found in scikit-learn.

a. Run the algorithm on MNIST with k = 5, 10, 20, plotting the objective function (1) as a function of
iteration. Visualize the cluster centers as a 28× 28 image.

b. (Extra credit: [3 points]) Implement the kmeans++ initialization scheme3 for your k-means implementation.
Note that this initialization scheme is widely used in practice, and as a rule should be used. Plot the
objective function as a function of iteration.

4 Joke Recommender System

4. [7 points] You will build a personalized joke recommender system. There are m = 100 jokes and n = 24, 983
users4. As historical data, every user read a subset of jokes and rated them. The goal is to recommend more
jokes, such that the recommended jokes match the individual user’s sense of humor. The historical rating is
represented by a matrix R ∈ Rn×m. The entry Ri,j represents the user i’s rating on joke j. The rating is a
real number in [−10, 10]: a higher value represents that the user is more satisfied with the joke. The directory
/jokes contains the text of all 100 jokes. Read them before you start! In addition, you are provided with two
files:

• train.txt contains the joke-user-score data representing the training set. Each line takes the form “i, j, s”,
where i is the user index, j is the joke index, and s is the user’s score in [−10, 10] describing how much
they liked the joke (higher is better).

• test.txt has the same format, with the same users rating movies held out from the training set.

Latent factor model is the state-of-the-art method for personalized recommendation. It learns a vector repre-
sentation ui ∈ Rd for each user and a vector representation vj ∈ Rd for each joke, such that the inner product
〈ui, vj〉 approximates the rating Ri,j . You will build a simple latent factor model. We will evaluate our learnt
vector representations by two metrics

• Mean squared error: 1
|S|
∑

(i,j)∈S(〈ui, vj〉 − Rij)2 where S (and the corresponding Ri,j values) are from

the test set

• Mean absolute error: 1
n

∑n
i=1

1
|Ni|

∑
j∈Ni

|〈ui, vj〉 −Rij | where Ni are the jokes rated by user i in the test
set

You will implement multiple estimators and use the inner product 〈ui, vj〉 to predict if user i likes joke j in the
test data. You will choose hyperparameters like d or the amount of regularization by creating a validation set
from the training set.

a. The first estimator pools all the users together and just predicts what the average user in the training set
rated the joke. This is equivalent to d = 1 with u as the all ones vector and v minimizing least squares.

b. Now replace all missing values in Ri,j no in the training set by zero. Then use singular value decomposition
(SVD) to learn a lower dimensional vector representation for users and jokes. Recall this means to project
the data vectors to lower dimensional subspaces of their corresponding spaces, spanned by singular vectors.
Refer to the lecture materials on SVD, PCA and dimensionality reduction. You should use an efficient
solver, I recommend scipy.sparse.linalg.svds. Try d = 1, 2, 5, 10, 20. Plot the error metrics on the
train and test as a function of d?

2To be more precise, it is both NP-hard in d when k = 2 and k when d = 2. See the references on the wikipedia page for k-means
for more details.

3See http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf.
4Data from (removed)

3

c. For sparse data, replacing all missing values by zero is not a completely satisfying solution. A missing
value means that the user has not read the joke, but doesn’t mean that the rating should be zero. A more
reasonable choice is to minimize the MSE only on rated joke. Let’s define a loss function:

L
(
{ui}, {vj}

)
:=

∑
(i,j)∈T

(〈ui, vj〉 −Ri,j)2 + λ

n∑
i=1

‖ui‖22 + λ

m∑
j=1

‖vj‖22,

where T and Ri,j here are from the training set and λ > 0 is the regularization coefficient. Implement
an algorithm to learn vector representations by minimizing the loss function L({ui}, {vj}). Note that you
may need to tune the hyper-parameter λ to optimize the performance.

Hint: you may want to employ an alternating minimization scheme. First, randomly initialize {ui} and
{vj}. Then minimize the loss function with respective to {ui} by treating {vj} as constant vectors, and
minimize the loss function with respect to {vj} by treating {ui} as constant vectors. Iterate these two
steps until both {ui} and {vj} converge. Note that when one of {ui} or {vj} is given, minimizing the loss
function with respect to the other part has closed-form solutions.

4

