Homework #1

CSE 546: Machine Learning Prof. Kevin Jamieson Due: 10/17 11:59 PM

1 Gaussians

Recall that for any vector $u \in \mathbb{R}^n$ we have $||u||_2^2 = u^T u = \sum_{i=1}^n u_i^2$ and $||u||_1 = \sum_{i=1}^n |u_i|$. For a matrix $A \in \mathbb{R}^{n \times n}$ we denote |A| as the determinant of A. A multivariate Gaussian with mean $\mu \in \mathbb{R}^n$ and covariance $\Sigma \in \mathbb{R}^{n \times n}$ has a probability density function $p(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$ which we denote as $\mathcal{N}(\mu, \Sigma)$.

1. [4 points] Let

•
$$\mu_1 = \begin{bmatrix} 1\\2 \end{bmatrix}$$
 and $\Sigma_1 = \begin{bmatrix} 1&0\\0&2 \end{bmatrix}$
• $\mu_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$ and $\Sigma_2 = \begin{bmatrix} 2&-1.8\\-1.8&2 \end{bmatrix}$
• $\mu_3 = \begin{bmatrix} 2\\-2 \end{bmatrix}$ and $\Sigma_3 = \begin{bmatrix} 3&1\\1&2 \end{bmatrix}$

For each i = 1, 2, 3 on a separate plot:

- a. Draw n = 100 points $X_{i,1}, \ldots, X_{i,n} \sim \mathcal{N}(\mu_i, \Sigma_i)$ and plot the points as a scatter plot with each point as a triangle marker (Hint: use numpy.random.randn to generate a mean-zero independent Gaussian vector, then use the properties of Gaussians to generate X).
- b. Compute the sample mean and covariance matrices $\hat{\mu}_i = \frac{1}{n} \sum_{j=1}^n X_{i,j}$ and $\hat{\Sigma}_i = \frac{1}{n-1} \sum_{j=1}^n (X_{i,j} \hat{\mu}_i)^2$. Compute the eigenvectors of $\hat{\Sigma}_i$. Plot the eigenvectors as line segments originating from $\hat{\mu}_i$ and have magnitude equal to the square root of their corresponding eigenvalues.
- c. If $(u_{i,1}, \lambda_{i,1})$ and $(u_{i,2}, \lambda_{i,2})$ are the eigenvector-eigenvalue pairs of the sample covariance matrix with

$$\lambda_{i,1} \ge \lambda_{i,2} \text{ and } ||u_{i,1}||_2 = ||u_{i,2}||_2 = 1, \text{ for } j = 1, \dots, n \text{ let } \widetilde{X}_{i,j} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_{i,1}}} u_{i,1}^T (X_{i,j} - \widehat{\mu}_i) \\ \frac{1}{\sqrt{\lambda_{i,2}}} u_{i,2}^T (X_{i,j} - \widehat{\mu}_i) \end{bmatrix}. \text{ Plot these new}$$

points as a scatter plot with each point as a circle marker.

2. [1 points] Let $X \sim \mathcal{N}(\mu_X, \Sigma_X)$ and $X' \sim \mathcal{N}(\mu_{X'}, \Sigma_{X'})$ be random *n*-dimensional vectors. We usually assume that Σ^{-1} exists, but in many cases it will not. Describe the conditions for which Σ_X^{-1} corresponding to random vector X will not exist (Hint: think about what happens as $\lambda_{i,2}$ goes to 0 in the last problem). Assume $\Sigma_{X'}^{-1}$ exists but Σ_X^{-1} does not; give an expression to generate random vectors $X \sim \mathcal{N}(\mu_X, \Sigma_X)$ using just random vectors $X' \sim \mathcal{N}(\mu_{X'}, \Sigma_{X'})$ and the quantities $\mu_X, \Sigma_X, \mu_{X'}, \Sigma_{X'}$ (Hint: for which $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ are X and AX' + b equal in distribution).

2 MLE, MAP, and Bias-Variance Tradeoff

3. [4 points] Suppose we observe a random vector $X \in \mathbb{R}^n$ with likelihood $p(x|\theta) = \mathcal{N}(\theta, \sigma^2 I) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp(-\frac{1}{2\sigma^2}(x-\theta)^T(x-\theta)).$

a. Compute $\hat{\theta}_{MLE} = \arg \max_{\theta} p(x|\theta)$.

- b. A domain expert says that the different θ_i unknowns are highly correlated with covariance matrix $\Sigma = \frac{1}{\nu}I + \nu \mathbf{1}\mathbf{1}^T$ for some known ν , and even gives you a prior $p(\theta) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp(-\frac{1}{2}\theta^T \Sigma^{-1}\theta)$.
 - (a) Show that $\hat{\theta}_{MAP} = \arg \max_{\theta} p(x|\theta)p(\theta)$ is the solution to $(I + \sigma^2 \Sigma^{-1})\hat{\theta}_{MAP} = x$.
 - (b) Use the Sherman-Morrison identity¹ on Σ^{-1} to show that $\hat{\theta}_{MAP}$ is the solution to $\left((1+\sigma^2\nu)I \frac{\nu^3\sigma^2}{1+\nu^2n}\mathbf{1}\mathbf{1}^T\right)\hat{\theta}_{MAP} = x.$
 - (c) If $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and **1** is a vector of *n* ones, show that $\hat{\theta}_{MAP}$ is a linear combination of $\bar{x}\mathbf{1}$ and *x*. (Hint: plug $\lambda_1 x + \lambda_2 \bar{x}\mathbf{1}$ into part (b) for $\hat{\theta}_{MAP}$ and solve for scalars λ_1 and λ_2).
 - (d) Using your solution to part (c), show that $\hat{\theta}_{MAP} \to \frac{1}{1+\sigma^2\nu}x + \frac{\sigma^2\nu}{1+\sigma^2\nu}\bar{x}\mathbf{1}$ as $n \to \infty$.
 - (e) In words, describe how the prior $p(\theta)$ affects the map estimate $\hat{\theta}_{MAP}$ for very small and very large ν , and how it relates to the MLE estimate $\hat{\theta}_{MLE}$.

4. [4 points] (Stein's Paradox) Let $\theta \in \mathbb{R}^n$ and $\lambda \in (0, 1)$. Let **1** denote the vector of n ones. For i = 1, ..., n let $X_i \sim \mathcal{N}(\theta_i, \sigma^2)$, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $\hat{\theta} = (1 - \lambda)X + \lambda \bar{X}\mathbf{1}$, $\bar{\theta} = \frac{1}{n} \sum_{i=1}^n \theta_i$. All expectations are taken with respect to the random draws of the X_i random variables.

- a. Show that $\mathbb{E}[||\widehat{\theta} \theta||_2^2] = ||\mathbb{E}[\widehat{\theta}] \theta||_2^2 + \mathbb{E}[||\widehat{\theta} \mathbb{E}[\widehat{\theta}]||_2^2]$, i.e., the bias² plus variance.
- b. Compute the variance of this estimator: $\mathbb{E}[||\widehat{\theta} \mathbb{E}[\widehat{\theta}]||_2^2]$
- c. Compute the bias² of this estimator: $||\mathbb{E}[\hat{\theta}] \theta||_2^2$
- d. What value of λ minimizes the overall error $\mathbb{E}[||\hat{\theta} \theta||_2^2]$?
- e. Describe how the optimal value of λ found in part d changes if $\frac{1}{n-1}\sum_{i=1}^{n}(\theta_i-\bar{\theta})^2 \gg \sigma^2$, $\frac{1}{n-1}\sum_{i=1}^{n}(\theta_i-\bar{\theta})^2 \approx \sigma^2$, or $\frac{1}{n-1}\sum_{i=1}^{n}(\theta_i-\bar{\theta})^2 \ll \sigma^2$.

3 Regularization Constants

For the following, recall that the loss function to be optimized under ridge regression is

$$\widehat{w}_{Ridge} = \sum_{i=1}^{n} (y_i - (w_0 + x_i^T w))^2 + \lambda ||w||_2^2$$

where λ is our regularization constant.

The loss function to be optimized under LASSO regression is

$$\widehat{w}_{Lasso} = \sum_{i=1}^{n} (y_i - (w_0 + x_i^T w))^2 + \lambda \|w\|_1$$

where λ is our regularization constant.

5. [1 points] Discuss briefly how choosing too small a λ affects the magnitude of the following quantities. Please describe the effects for both ridge and LASSO, or state why the effects will be the same.

- a. The error on the training set.
- b. The error on the testing set.
- c. The elements of w.
- d. The number of nonzero elements of w.

6. [1 points] Now discuss briefly how choosing too large a λ affects the magnitude of the same quantities in the previous question. Again describe the effects for both ridge and LASSO, or state why the effects will be the same.

¹For square invertible matrix $A \in \mathbb{R}^{n \times n}$ and vectors $u, v \in \mathbb{R}^n$, we have that $(A + uv^T)$ is invertible iff $1 + v^T A^{-1} u \neq 0$ and $(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1} uv^T A^{-1}}{1 + v^T A^{-1} u}$.

4 Programming: Ridge Regression on MNIST

7. *[10 points]* In this problem we will implement a least squares classifier for the MNIST data set. The task is to classify handwritten images of numbers between 0 to 9.

You are **NOT** allowed to use any of the prebuilt classifiers in sklearn. Feel free to use any method from numpy or scipy. Remember: if you are inverting a matrix in your code, you are probably doing something wrong (Hint: look at scipy.linalg.solve).

Get the data from https://pypi.python.org/pypi/python-mnist. Load the data as follows:

```
from mnist import MNIST
```

```
def load_dataset():
    mndata = MNIST('./data/')
    X_train, labels_train = map(np.array, mndata.load_training())
    X_test, labels_test = map(np.array, mndata.load_testing())
    X_train = X_train/255.0
    X_test = X_test/255.0
```

You can visualize a single example by reshaping it to its original 28×28 image shape.

a. In this problem we will choose a linear classifier to minimize the least squares objective:

$$\widehat{W} = \operatorname{argmin}_{W \in \mathbb{R}^{d \times k}} \sum_{i=0}^{n} \|W^{T} x_{i} - y_{i}\|_{2}^{2} + \lambda \|W\|_{F}^{2}$$

We adopt the notation where we have n data points in our training objective and each data point $x_i \in \mathbb{R}^d$. k denotes the number of classes which is in this case equal to 10. Note that $||W||_F$ corresponds to the Frobenius norm of W, i.e. $||\operatorname{vec}(W)||_2^2$.

Derive a closed form for \widehat{W} .

- b. As as first step we need to choose the vectors $y_i \in \mathbb{R}^k$ by converting the original labels (which are in $\{0, \ldots, 9\}$) to vectors. We will use the one-hot encoding of the labels, i.e. the original label $j \in \{0, \ldots, 9\}$ is mapped to the standard basis vector e_i . To classify a point x_i we will use the rule $\arg\max_{i=0,\ldots,9} \widehat{W}^T x_i$.
- c. Code up a function called train that returns \widehat{W} that takes as input $X \in \mathbb{R}^{n \times d}$, $y \in \{0, 1\}^{n \times k}$, and $\lambda > 0$. Code up a function called **predict** that takes as input $W \in \mathbb{R}^{d \times k}$, $X' \in \mathbb{R}^{m \times d}$ and returns an *m*-length vector with the *i*th entry equal to $\arg \max_{j=0,\ldots,9} W^T x'_i$ where x'_i is a column vector representing the *i*th example from X'.

Train \widehat{W} on the MNIST training data with $\lambda = 10^{-4}$ and make label predictions on the test data. What is the training and testing classification accuracy (they should both be about 85%)?

d. We just fit a classifier that was linear in the pixel intensities to the MNIST data. For classification of digits the raw pixel values are very, very bad features: it's pretty hard to separate digits with linear functions in pixel space. The standard solution to the this is to come up with some transform $h : \mathbb{R}^d \to \mathbb{R}^p$ of the original pixel values such that the transformed points are (more easily) linearly separable. In this problem, you'll use the feature transform:

$$h(x) = \cos(Gx + b)$$

where $G \in \mathbb{R}^{p \times d}$, $b \in \mathbb{R}^p$, and the cosine function is applied elementwise. We'll choose G to be a random matrix, with each entry sampled i.i.d. with mean $\mu = 0$ and variance $\sigma^2 = 0.1$, and b to be a random vector sampled i.i.d. from the uniform distribution on $[0, 2\pi]$. The big question is: how do we choose p?

Cross-validation, of course!

Randomly partition your training set into proportions 80/20 to use as a new training set and validation set, respectively. Using the **train** function you wrote above, train a \widehat{W}^p for different values of p and plot the classification training error and validation error on a single plot with p on the x-axis. Be careful, your computer may run out of memory and slow to a crawl if p is too large ($p \leq 6000$ should fit into 4 GB of memory). You can use the same value of λ as above but feel free to study the effect of using different values of λ and σ^2 for fun.

e. Instead of reporting just the classification test error, which is an unbiased estimate of the *true* error, we would like to report a *confidence interval* around the test error that contains the true error. For any $\delta \in (0, 1)$, it follows from Hoeffding's inequality that if X_i for all $i = 1, \ldots, m$ are i.i.d. random variables with $X_i \in [a, b]$ and $\mathbb{E}[X_i] = \mu$, then with probability at least $1 - \delta$

$$\mathbb{P}\left(\left|\left(\frac{1}{m}\sum_{i=1}^{m}X_{i}\right)-\mu\right|\geq\sqrt{\frac{\log(2/\delta)}{2m}}\right)\leq\delta$$

We will use the above equation to construct a confidence interval around our true classification error since the test error is just the average of indicator variables taking values in 0 or 1 corresponding to the *i*th test example being classified correctly or not, respectively, where an error happens with probability μ , the *true* classification error.

Let \hat{p} be the value of p that approximately minimizes the validation error on the plot you just made and use $\widehat{W}^{\hat{p}}$ to compute the classification test accuracy, which we will denote as E_{test} . Use Hoeffding's inequality, above, to compute a confidence interval that contains $\mathbb{E}[E_{test}]$ (i.e., the *true* error) with probability at least 0.95 (i.e., $\delta = 0.05$). Report E_{test} and the confidence interval.