
Homework #1

CSE 546: Machine Learning

Prof. Kevin Jamieson

Due: 10/17 11:59 PM

1 Gaussians

Recall that for any vector u ∈ Rn we have ||u||22 = uTu =
∑n
i=1 u

2
i and ||u||1 =

∑n
i=1 |ui|. For a matrix A ∈ Rn×n

we denote |A| as the determinant of A. A multivariate Gaussian with mean µ ∈ Rn and covariance Σ ∈ Rn×n
has a probability density function p(x|µ,Σ) = 1√

(2π)n|Σ|
exp(− 1

2 (x−µ)TΣ−1(x−µ)) which we denote asN (µ,Σ).

1. [4 points] Let

• µ1 =

[
1
2

]
and Σ1 =

[
1 0
0 2

]

• µ2 =

[
−1
1

]
and Σ2 =

[
2 −1.8
−1.8 2

]

• µ3 =

[
2
−2

]
and Σ3 =

[
3 1
1 2

]
For each i = 1, 2, 3 on a separate plot:

a. Draw n = 100 points Xi,1, . . . , Xi,n ∼ N (µi,Σi) and plot the points as a scatter plot with each point as
a triangle marker (Hint: use numpy.random.randn to generate a mean-zero independent Gaussian vector,
then use the properties of Gaussians to generate X).

b. Compute the sample mean and covariance matrices µ̂i = 1
n

∑n
j=1Xi,j and Σ̂i = 1

n−1

∑n
j=1(Xi,j − µ̂i)2.

Compute the eigenvectors of Σ̂i. Plot the eigenvectors as line segments originating from µ̂i and have
magnitude equal to the square root of their corresponding eigenvalues.

c. If (ui,1, λi,1) and (ui,2, λi,2) are the eigenvector-eigenvalue pairs of the sample covariance matrix with

λi,1 ≥ λi,2 and ||ui,1||2 = ||ui,2||2 = 1, for j = 1, . . . , n let X̃i,j =

 1√
λi,1

uTi,1(Xi,j − µ̂i)
1√
λi,2

uTi,2(Xi,j − µ̂i)

. Plot these new

points as a scatter plot with each point as a circle marker.

2. [1 points] Let X ∼ N (µX ,ΣX) and X ′ ∼ N (µX′ ,ΣX′) be random n-dimensional vectors. We usually assume
that Σ−1 exists, but in many cases it will not. Describe the conditions for which Σ−1

X corresponding to random
vector X will not exist (Hint: think about what happens as λi,2 goes to 0 in the last problem). Assume Σ−1

X′

exists but Σ−1
X does not; give an expression to generate random vectors X ∼ N (µX ,ΣX) using just random

vectors X ′ ∼ N (µX′ ,ΣX′) and the quantities µX ,ΣX , µX′ ,ΣX′ (Hint: for which A ∈ Rn×n, b ∈ Rn are X and
AX ′ + b equal in distribution).

2 MLE, MAP, and Bias-Variance Tradeoff

3. [4 points] Suppose we observe a random vectorX ∈ Rn with likelihood p(x|θ) = N (θ, σ2I) = 1
(2πσ2)n/2 exp(− 1

2σ2 (x−
θ)T (x− θ)).

a. Compute θ̂MLE = arg maxθ p(x|θ).
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b. A domain expert says that the different θi unknowns are highly correlated with covariance matrix Σ =
1
ν I + ν11T for some known ν, and even gives you a prior p(θ) = 1√

(2π)n|Σ|
exp(− 1

2θ
TΣ−1θ).

(a) Show that θ̂MAP = arg maxθ p(x|θ)p(θ) is the solution to (I + σ2Σ−1)θ̂MAP = x.

(b) Use the Sherman-Morrison identity1 on Σ−1 to show that θ̂MAP is the solution

to
(

(1 + σ2ν)I − ν3σ2

1+ν2n11
T
)
θ̂MAP = x.

(c) If x̄ = 1
n

∑n
i=1 xi and 1 is a vector of n ones, show that θ̂MAP is a linear combination of x̄1 and x.

(Hint: plug λ1x+ λ2x̄1 into part (b) for θ̂MAP and solve for scalars λ1 and λ2).

(d) Using your solution to part (c), show that θ̂MAP → 1
1+σ2νx+ σ2ν

1+σ2ν x̄1 as n→∞.

(e) In words, describe how the prior p(θ) affects the map estimate θ̂MAP for very small and very large

ν, and how it relates to the MLE estimate θ̂MLE .

4. [4 points] (Stein’s Paradox) Let θ ∈ Rn and λ ∈ (0, 1). Let 1 denote the vector of n ones. For i = 1, . . . , n let

Xi ∼ N (θi, σ
2), X̄ = 1

n

∑n
i=1Xi, θ̂ = (1− λ)X + λX̄1, θ̄ = 1

n

∑n
i=1 θi. All expectations are taken with respect

to the random draws of the Xi random variables.

a. Show that E[||θ̂ − θ||22] = ||E[θ̂]− θ||22 + E[||θ̂ − E[θ̂]||22], i.e., the bias2 plus variance.

b. Compute the variance of this estimator: E[||θ̂ − E[θ̂]||22]

c. Compute the bias2 of this estimator: ||E[θ̂]− θ||22

d. What value of λ minimizes the overall error E[||θ̂ − θ||22]?

e. Describe how the optimal value of λ found in part d changes if 1
n−1

∑n
i=1(θi−θ̄)2 � σ2, 1

n−1

∑n
i=1(θi−θ̄)2 ≈

σ2, or 1
n−1

∑n
i=1(θi − θ̄)2 � σ2.

3 Regularization Constants

For the following, recall that the loss function to be optimized under ridge regression is

ŵRidge =

n∑
i=1

(yi − (w0 + xTi w))2 + λ‖w‖22

where λ is our regularization constant.

The loss function to be optimized under LASSO regression is

ŵLasso =

n∑
i=1

(yi − (w0 + xTi w))2 + λ‖w‖1

where λ is our regularization constant.

5. [1 points] Discuss briefly how choosing too small a λ affects the magnitude of the following quantities. Please
describe the effects for both ridge and LASSO, or state why the effects will be the same.

a. The error on the training set.

b. The error on the testing set.

c. The elements of w.

d. The number of nonzero elements of w.

6. [1 points] Now discuss briefly how choosing too large a λ affects the magnitude of the same quantities in the
previous question. Again describe the effects for both ridge and LASSO, or state why the effects will be the
same.

1For square invertible matrix A ∈ Rn×n and vectors u, v ∈ Rn, we have that (A + uvT ) is invertible iff 1 + vTA−1u 6= 0 and

(A + uvT )−1 = A−1 − A−1uvTA−1

1+vTA−1u
.
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4 Programming: Ridge Regression on MNIST

7. [10 points] In this problem we will implement a least squares classifier for the MNIST data set. The task is
to classify handwritten images of numbers between 0 to 9.

You are NOT allowed to use any of the prebuilt classifiers in sklearn. Feel free to use any method from numpy

or scipy. Remember: if you are inverting a matrix in your code, you are probably doing something wrong
(Hint: look at scipy.linalg.solve).

Get the data from https://pypi.python.org/pypi/python-mnist.
Load the data as follows:

from mnist import MNIST

def load_dataset():

mndata = MNIST(’./data/’)

X_train, labels_train = map(np.array, mndata.load_training())

X_test, labels_test = map(np.array, mndata.load_testing())

X_train = X_train/255.0

X_test = X_test/255.0

You can visualize a single example by reshaping it to its original 28× 28 image shape.

a. In this problem we will choose a linear classifier to minimize the least squares objective:

Ŵ = argminW∈Rd×k

n∑
i=0

‖WTxi − yi‖22 + λ‖W‖2F

We adopt the notation where we have n data points in our training objective and each data point xi ∈ Rd.
k denotes the number of classes which is in this case equal to 10. Note that ‖W‖F corresponds to the
Frobenius norm of W , i.e. ‖vec(W )‖22.

Derive a closed form for Ŵ .

b. As as first step we need to choose the vectors yi ∈ Rk by converting the original labels (which are in
{0, . . . , 9}) to vectors. We will use the one-hot encoding of the labels, i.e. the original label j ∈ {0, . . . , 9}
is mapped to the standard basis vector ej . To classify a point xi we will use the rule arg maxj=0,...,9 Ŵ

Txi.

c. Code up a function called train that returns Ŵ that takes as input X ∈ Rn×d, y ∈ {0, 1}n×k, and λ > 0.
Code up a function called predict that takes as input W ∈ Rd×k, X ′ ∈ Rm×d and returns an m-length
vector with the ith entry equal to arg maxj=0,...,9W

Tx′i where x′i is a column vector representing the ith
example from X ′.

Train Ŵ on the MNIST training data with λ = 10−4 and make label predictions on the test data. What
is the training and testing classification accuracy (they should both be about 85%)?

d. We just fit a classifier that was linear in the pixel intensities to the MNIST data. For classification of digits
the raw pixel values are very, very bad features: it’s pretty hard to separate digits with linear functions
in pixel space. The standard solution to the this is to come up with some transform h : Rd → Rp of the
original pixel values such that the transformed points are (more easily) linearly separable. In this problem,
you’ll use the feature transform:

h(x) = cos(Gx+ b)

where G ∈ Rp×d, b ∈ Rp, and the cosine function is applied elementwise. We’ll choose G to be a random
matrix, with each entry sampled i.i.d. with mean µ = 0 and variance σ2 = 0.1, and b to be a random
vector sampled i.i.d. from the uniform distribution on [0, 2π]. The big question is: how do we choose p?
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Cross-validation, of course!

Randomly partition your training set into proportions 80/20 to use as a new training set and validation

set, respectively. Using the train function you wrote above, train a Ŵ p for different values of p and plot
the classification training error and validation error on a single plot with p on the x-axis. Be careful, your
computer may run out of memory and slow to a crawl if p is too large (p ≤ 6000 should fit into 4 GB
of memory). You can use the same value of λ as above but feel free to study the effect of using different
values of λ and σ2 for fun.

e. Instead of reporting just the classification test error, which is an unbiased estimate of the true error, we
would like to report a confidence interval around the test error that contains the true error. For any
δ ∈ (0, 1), it follows from Hoeffding’s inequality that if Xi for all i = 1, . . . ,m are i.i.d. random variables
with Xi ∈ [a, b] and E[Xi] = µ, then with probability at least 1− δ

P

(∣∣∣∣∣
(

1

m

m∑
i=1

Xi

)
− µ

∣∣∣∣∣ ≥
√

log(2/δ)

2m

)
≤ δ

We will use the above equation to construct a confidence interval around our true classification error since
the test error is just the average of indicator variables taking values in 0 or 1 corresponding to the ith
test example being classified correctly or not, respectively, where an error happens with probability µ, the
true classification error.

Let p̂ be the value of p that approximately minimizes the validation error on the plot you just made and use
Ŵ p̂ to compute the classification test accuracy, which we will denote as Etest. Use Hoeffding’s inequality,
above, to compute a confidence interval that contains E[Etest] (i.e., the true error) with probability at
least 0.95 (i.e., δ = 0.05). Report Etest and the confidence interval.
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