Neural Networks

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their
course materials freely avallable online. Feel free to reuse or adapt these slides for your own academic purposes,
provided that you include proper attribution. Please send comments and corrections to Eric.

Neural Networks

* Origins: Algorithms that try to mimic the brain
* 40s and 50s: Hebbian learning and Perceptron
* Perceptrons book in 1969 and the XOR problem

* Very widely used in 80s and early 90s; popularity
diminished in late 90s.

* Recent resurgence: State-of-the-art technique for
many applications

e Artificial neural networks are not nearly as complex
or intricate as the actual brain structure

Based on slide by Andrew Ng

Single Node

“bias unit” Lo
VASEREN €T
| CEO,‘\ o — X = xl 9 p—
_/ \\ 2
\\90 I3
01 "~))
N
0 .
T2 > 2. | ~he(x) = g(07x)
03
@/ EEECE
1

Based on slide by Andrew Ng

Slide by Andrew Ng

Neural Network

Layer 1

(Input Layer)

Layer 2 Layer 3
(Hidden Layer) (Output Layer)

11

Neural networks Terminology

Layered feed-forward network

* Neural networks are made up of nodes or units,
connected by links

* Each link has an associated weight and activation level

* Each node has an input function (typically summing over
weighted inputs), an activation function, and an output

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Feed-Forward Process

* |nput layer units are set by external data, which
causes their output links to be activated at the

specified level

 Working forward through the network, the input
function of each unit is applied to compute the input

value
— Usually this is just the weighted sum of the activation on
the links feeding into this node

* The activation function transforms this input
function into a final value

— Typically this is a nonlinear function, often a sigmoid
function corresponding to the “threshold” of that node

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

OV = weight matrix stores parameters
from layerj to layerj + 1

e al) = “activation” of unit/ in layer
JaY ‘2>a53)_>h9(x) - : :

a\? = g(8\)xo + O\Va1 + 0 zs + 01 3)
a§2) = g((-')%)a:o + @()£C + @()x + @(1) 3)
a:(f) = g(@(l)x + @()x —|—@()2 —I—('-)%):B)
ho(@) = a® = g(02a® + 6P + 64?1+ 0@2)

If network has s; units in Iayerj and S;,; units in layer j+1,
then ©U) has dlmen5|on Siv1 X (S+1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng

Vectorization

()=o)
(0520 + O%) 1 + O 2y + 0f)a5) = g (=47
af? = g (O)wo + 05 w1 + O w2 + 05) = g (=57
(62 + 6 + 620 + 6Za) = g ()
I:l> Feed-Forward Steps:
z(2) — (M
a(2) — g(Z(Z))

Add ol =1
,(3) — 924

he(x) = al®) = g(2!V)

15

Based on slide by Andrew Ng

Other Network Architectures

©
\/ > o
@/\

Layer 1 Layer 2 Layer 3 Layer 4

[denotes the number of layers

L
s € NT7 contains the numbers of nodes at each layer

— Not counting bias units
— Typically, S, = d (# input features) and S, _,=K (# classes)

Multiple Output Units: One-vs-Rest

OO

0
when pedestrian

Slide by Andrew Ng

>
2905

o O = O

when car

> 40“
ARK RN P

‘ N '
L
‘é.vo‘r« 9
NOZENF

s
2
o O

K
< he (X) c R
F 0] F 0]
0 0
h@(X) ~ 1 h@(X) =~ O
L O - L 1 -
when motorcycle when truck

Multiple Output Units: One-vs-Rest

he (X) c R
We want:
[1] [0 | [0] [0]
0 1 0 0
heo(x) ~ 0 ho(x) ~ 0 he(x) ~ 1 he(x) ~ 0
0 | 0 | 0 | 1]
when pedestrian when car when motorcycle when truck

* Given{(Xy,¥4), (X2,¥2), -y (XY
* Must convert labels to 1-of-K representation

0

when car, etc.

S O~ O

0
— e.g.,, Yi=| { | when motorcycle, y: =
0

Based on slide by Andrew Ng - =

Neural Network Classification

Given:

{(X1:¥1)s (X2:¥2)s -5 (Xps¥)}

L
s € NT Contains # nodes at each layer
— S,=d (# features)

Binary classification Multi-class classification (K classes)
T

0 0 0 1
pedestrian car motorcycle truck

K output units (s, ;= K)

1 output unit (s; = 1)

Slide by Andrew Ng

Understanding Representations

Representing Boolean Functions

Logistic / Sig_moid Function
Simple example: AND

x1,x2 € {0,1} g(Z)

y = x1 AND x4

-6 -4 -2 0 2 4 5)
X X ho(X)
he(X) = g(-30 + 20x, + 20x.) 01 02 g(_so) 5
0 1 g(-10)=0
1 0 g(-10)= 0
1 1 g(10) = 1

Based on slide and example by Andrew Ng 21

Representing Boolean Functions

—)hg (X)

Combining Representations to Create
Non-Linear Functions

(NOT x,) AND (NOT X,)

e +10

II I

= | 57
I | ==

I11 v

Based on example by Andrew Ng

Layering Representations

7?&53’74‘“[/6 Xox ... X
073324845 X1 e Xog
LbeFZ2923 32 6
| 2>/b 6 524Y
nNegR75 8 95Y o
4466502/ 3 €649 o
F&5 /9787360 °
20 2823 d 50
C727%¥21s32700
719399572298 | X381 --- Xa00
20 x 20 pixel images
d =400 10 classes

Each image is “unrolled” into a vector X of pixel intensities

24

Layering Representations

Wel N~ a0 Ghwv
DreadalSNNwbh
VAN ONO o Ve
QWU Do sy
N e Qoo N 8 Wy Ly o0 e
VNGO N x L
VOSSN G RNyS
NReovreaoLTen~d

MEeESH LI —-00N
SN0 o B0 W]

l(9”
Output Layer

Hidden Layer

Input Layer

25

Neural Network Learning

Perceptron Learning Rule

0« 0+ oy — h(x))x

Intuitive rule:
— If output is correct, don’t change the weights

— If output is low (h(Xx) =0, y = 1), increment
weights for all the inputs which are 1

— If output is high (h(X) =1, y = 0), decrement
weights for all inputs which are 1

Perceptron Convergence Theorem:

* If there is a set of weights that is consistent with the training
data (i.e., the data is linearly separable), the perceptron
learning algorithm will converge [Minksy & Papert, 1969]

Batch Perceptron

n

Given training data {(m(i), y(i))}

Let 6 < [0,0,...,0] =
Repeat:
Let A « [0,0,...,0]
fore=1...n,do
if y(i)w(i)ﬁ <0 // prediction for it instance is incorrect
A — A+ yWgl
A — A/n // compute average update
0 «— 0+ aA
Until ||All2 < €

 Simplest case: a =1 and don’t normalize, yields the fixed
increment perceptron

* Each increment of outer loop is called an epoch

Learning in NN: Backpropagation

e Similar to the perceptron learning algorithm, we cycle
through our examples

— |If the output of the network is correct, no changes are made
— If there is an error, weights are adjusted to reduce the error

 We are just performing (stochastic) gradient descent!

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Cost Function

Logistic Regression:

J(0) = —% Z[yz- log he(x;i) + (1 — yi) log (1 — he(x;))] + Qi 295

Neural Network:

he € RE (he(x)); = ithoutput
J(O)=— % Z Zyzk log (he(x:))r + (1 — y;1) log (1 — (h@(xz))kﬂ
i=1 k=1

A (1) 2 Kkt class: true i
- : , predicted
+ 2n Sj S: Sj (@ji) not kt class: , predicted

=1 i=1 j=1

Based on slide by Andrew Ng 33

Optimizing the Neural Network

n K

J@)=— 1 {Z > yir log(he (%)) + (1 — yir) log(l _ (h@(xi))k)}

1=1 k=1

Unlike before, J(©) is not
convex, so GD on a neural net

Solve via: m(gn J(©) yields a local optimum

0
0 J(@) = a(-l)(S(Hl) (ignoring A; if A = 0)
06!

Forward Backpropagation

Propagation
ased on slide by Andrew Ng

Forward Propagation

* Given one labeled training instance (X, y):

Forward Propagation

e alll=x

e 2(2)= @M)q(1) a(l)
e g(2) = g(z(z)) [add ao(z)]

e 23)= O2)q(2)

e)= g(z(3)) [add ao(3)]

e 72(4)= OB)q0)

e g4) = h@(x) = g(z(4))

Based on slide by Andrew Ng

Backpropagation Intuition

\ () _, 4@ 23 1 g Ay g
AN 5 5
A\ Yo £ o)

5(2) 553)

o) = “error” of node jin layer /
m_ 9
Formally, §;
(9,23(-1)

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng

cost(x;)

37

Backpropagation Intuition

\ () _, 4@ 23 1 g Ay @)
AN 5 5V
A\ o) o)
72> A o4 =a,@ —y
5 5

o) = “error” of nogej in layer /
Formally, 5(.” z
520

where cost(x;) = y;log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng

——cost(x;)

38

Backpropagation Intuition

Z§4) — CLYL)

o) = “error” of node j in layer /

’ w_ 0

Formally, 0; " = @cost(xi)
J

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng 39

Backpropagation Intuition

5.3 = 0,3 x5,®

o) = “error” of node j in layer /

’ w_ 0

Formally, 0; " = @Cost(xi)
J

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng 40

Backpropagation Intuition

(D, G G
o\
oAA"%

@é?
0512) = 04,02 x5,05) + O,,(2) x5,05)

o) = “error” of node jin layer /
Formally 5\ — 0
" Oz (l)

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

41

——cost(x;)

Based on slide by Andrew Ng

Bas

Backpropagation: Gradient Computation

Let 6{) = “error” of node jin layer /

(#layers L = 4)

Element-wise
product .*

Backpropagation %

« 04 =ag" -y
o 60) = (OOBNTs(4) *
e 02 = (0@)T56)

+ (No o)

ed on slide by Andrew Ng

7 (z(3)

- g
Fg’(z

'v
=N
A /AN
xﬁ(

g’(z(3)) =g * (1_a(3))

g’(z(Z)) = g2 * (1_3(2))

42

Backpropagation

Set A;lj) =0 Vi, (Used to accumulate gradient)
For each training instance (x;,y;):

Set all) = x;

Compute {a®, ... all)} via forward propagation

Compute §&) = all) —y,

Compute errors {6(Z—1 ... §3)})

Compute gradients AE? = AE? + a§l)5(l+1)

AY 120 if j#0

Compute ave regularized gradient D(l-) =
P 58 5 “J { A(otherwise

3|*—‘3|*—‘

D") is the matrix of partial derivatives of J(©)

Based on slide by Andrew Ng

Training a Neural Network via Gradient
Descent with Backprop

Given: training set {(x1,%1),- -, (Xn,¥Yn)}
Initialize all ©) randomly (NOT to 0!)
Loop // each iteration is called an epoch
Set Az(-;) =0 Viz,j (Used to accumulate gradient)
For each training instance (x;,y;):
Set all) = x;
Compute {a®, ... all)} via forward propagation
Compute (L) = all) —y,
Compute errors {§(L—D ... §32))
Compute gradients AE? — A,g-) + a§l>5§l+1>
IAD a0 ifj#0

I .
4 A(. : otherwise
n 1]

uonegedoudyoeg

Compute avg regularized gradient DY = {

L)

Update weights via gradient step @7(;;-) = @1(;;.) — ozDg-)
Until weights converge or max #epochs is reached

Based on slide by Andrew Ng

Several Practical Tricks

Initialization

* Problem is highly non-convex, and heuristics exist to
start training (at the least, randomize initial weights)

Optimization tricks

e Momentum-based methods

* Decaying step size

* Dropout to avoid co-adaptation / overfitting

Minibatch

 Use more than a single point to estimate gradient

Neural Networks vs Deep Learning?

DNN are big neural networks

* Depth: often ~5 layers (but some have 20+)
— Typically not fully connected!

* Width: hidden nodes per layer in the thousands
 Parameters: millions to billions

Algorithms / Computing

* New algorithms (pre-training, layer-wise training,
dropout, etc.)

 Heavy computing requirements (GPUs are essential)

