CSE 546: Machine Learning Lecture 10
Feature construction: Notes on Kernels and Random Features...

Instructor: Sham Kakade

1 Kernel methods: The basic idea

The basic idea is to make new predictions based on a similarity measure to points in our dataset. Suppose we have a
training set:
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Let K (x,2’) be a a similarity measure between two points x and .

Given a new point x, we seek to make a prediction of y in the following form:
n
y = Z o; K (z;,x)
i=1

where x; are points in our training set and @ = (a1 . . . v, ) is our weight vector. Note that the dimension of our weight
vector is now n. Also, here, z need not be a vector (it could be some arbitrary object).

2 Kernels

Let us instead make a feature vector out of a point x € X (where & is our input space) through a function ¢ which
maps x to some high dimensional space, where ¢ : X + R? (often d may be much greater than the sample size n).

A kernel is an inner product mapping where:
K(z,2") = o(z) " $(a")
In other words, the kernel just specifies the inner product under some feature mapping ¢.

Sometimes we specify the kernel without explicitly defining a function ¢. In particular Mercer’s theorem, states
conditions under which a function K (z, ") is a valid Kernel. In particular K (x, 2') is a valid kernel (i.e. there exists
a corresponding ¢ so that K (z,2) := ¢(x) " ¢(x")) if and only if K is positive semidefinite in the following sense:
for all points x1, ... z;, the matrix D whose 4, j-th coordinate in K (x;, x;) is a positive semidefinite matrix.

2.1 Examples

Suppose x and x’ are d-dimensional vectors. Let us consider the following Kernel:
K(z,2") = (z"a)?
Here, we have that:

d
K(z,2') = (Z zjah)? = Zx?(x;)Q + Qijxkx;w%
Jj=1 J

i<k



Hence, we see that the feature map is just:
() = (23,23, .. .23, V2x1 29,V 22123, . . N 2T 29, V20025, V22024, . . )

This proves that K is indeed a kernel. Also, we see that K is a kernel corresponding to exactly a degree two polyno-
mial.

A similar argument show that:
K(z,2') = (z"a2")k
is a kernel corresponding do exactly a degree £ polynomial. Also, one can see that:
K(z,2') = ("2 +¢)F
(where c is a constant) is a kernel corresponding a polynomial containing terms of degree k or less.

A kernel which often works well in practice is the radial basis kernel, which is defined as follows:
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One can explicitly prove that this is a valid kernel (though the dimension of the corresponding feature map ¢ is note
finite).

K(z,2') = exp(—

3 Kernel Regression

In the case of Kernel regression, let us suppose we want to fit the line:
T
w ¢(x)
to our data. Here, ¢ is the feature mapping corresponding to the kernel K.

In particular, we could consider fitting the weights with ridge regression:

~ . 1
W = argmin,, — Z(yl —w P(x))? + A|w]?

i

One can show that this best fit line is:
W' (x) =Y &K (z;,x)
where:
a&=D(D+ )\In)*lY

where D is the n X n matrix in which:
Djr = K(xj,zx)

3.1 An Equivalent “dual” viewpoint

Equivalently, the following formulation will result in the same mapping. Note that (3 ;oK (2, x;)) is our prediction
of the point y;. We can find an estimate of « as follows:

2
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where o" Da is our regularizer. This choice of a regularizer is natural (as it will give rise to the same solution had we
worked with ¢).

If we solve for the above (and rearrange the expression for the solution), we obtain that:
& = D(D+ \,,)"'Y

which is precisely what we obtained in the “primal” problem.

4 Random Features

For the radial basis function, a natural way to approximate this function is as follows. First sample vectors: vy, v, ... v;
where each v; € R? and sampled from a N (0, J%Id). Then construct the feature vector:

é(z) = (cos(v{ z),sin(v] ), cos(vq x),sin(vy x), .. .cos(v, z),sin(v, ))

For large enough [, one can show that this well approximates the radial basis function.

4.1 A little intuition for the construction
The intuition for this mapping is as follows: Let’s look at the two vectors (cos v{ z,sinv{ ) and (cosv{ 2’, sinv] 2’)
(which is part of our random features). Using that v; is sampled from a normal distribution, we have that:

E[(cosv{ z,isinv] )" (cosv, 2’,isinv] )] = K(z,z')
where the K above is the radial basis function, the expectation with respect to v1, and i is an imaginary number. So we
see that, in expectation, the above feature mapping is correct. Furthermore, with an appropriate choice of /, it will be
the case that our feature vectors approximates the correct inner products on all relevant points (through a law of large
numbers argument).



