

Announcements: HW4 posted Poster Session Thurs, Dec 8 Today: Review: EM Neural nets and deep learning

Poster Session

- - Thursday Dec 8, 9-11:30am
 - □ Please arrive 20 mins early to set up
- Everyone is expected to attend
- Prepare a poster
 - We provide poster board and pins
 - □ Both one large poster (recommended) and several pinned pages are OK
- Capture
 - □ Problem you are solving
 - Data you used
 - ML methodology
 - □ Results

■ Prepare a 1-minute speech about your project

- Two instructors will visit your poster separately
- Project Grading: scope, depth, data

Sham Kakade

Reinforcement Learning

training by feedback

©Sham Kakade

- ۲
- Reinforcement learning
- An agent
 - □ Makes sensor observations
 - Must select action
 - □ Receives rewards
 - positive for "good" states
 - negative for "bad" states

[Ng et al. '05]

©Sham Kakade

Markov Decision Process (MDP) Representation

- State space:
 - □ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents
- Reward function:
 - □ Total reward R(x,a)
 - sometimes reward can depend on action
- Transition model:
 - \Box Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

©Sham Kakade

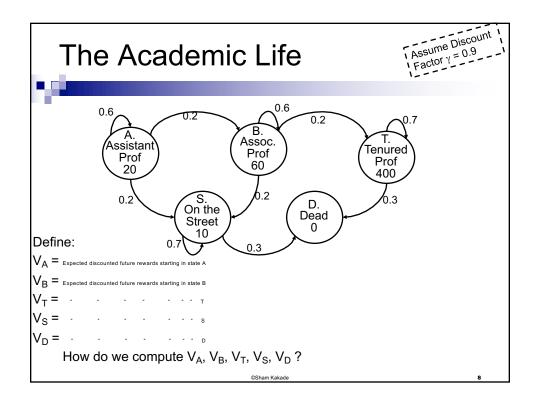
Discount Factors

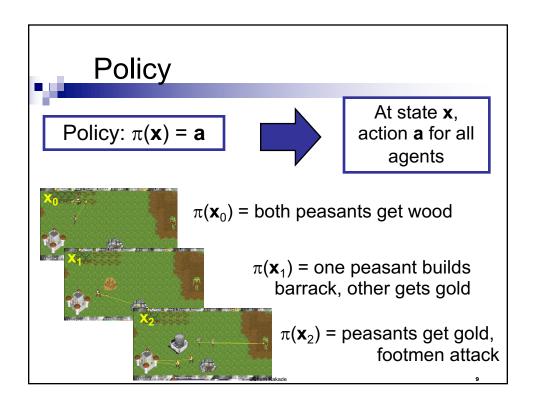
People in economics and probabilistic decision-making do this all the time.

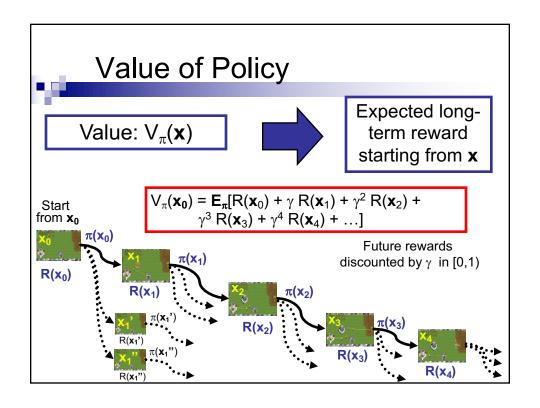
The "Discounted sum of future rewards" using discount factor γ " is

```
(reward now) + \gamma (reward in 1 time step) + \gamma^2 (reward in 2 time steps) + \gamma^3 (reward in 3 time steps) + \vdots (infinite sum)
```

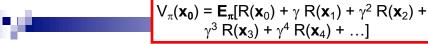
@Sham Kakada







Computing the value of a policy



- Discounted value of a state:
 - \square value of starting from x_0 and continuing with policy π from then on

$$V_{\pi}(x_0) = E_{\pi}[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \cdots]$$

= $E_{\pi}[\sum_{t=0}^{\infty} \gamma^t R(x_t)]$

A recursion!

Simple approach for computing the value of a policy: Iteratively $V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$

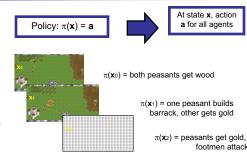
$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
 - □ Start with some guess V⁰

Iteratively say:
$$V_{\pi}^{t+1}(x) \leftarrow R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}^{t}(x')$$

- □ Stop when $||V_{t+1}-V_t||_{\infty} < \epsilon$
 - means that $||V_{\pi}-V_{t+1}||_{\infty} < \varepsilon/(1-\gamma)$

- So far, told you how good a policy is...
- But how can we choose the best policy???
- Suppose there was only one time step:
 - □ world is about to end!!!
 - select action that maximizes reward!



©Sham Kakade

13

Unrolling the recursion

- Choose actions that lead to best value in the long run
 - $\hfill \square$ Optimal value policy achieves optimal value V^{\star}

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} [\max_{a_1} R(x_1) + \gamma^2 E_{a_1} [\max_{a_2} R(x_2) + \cdots]]$$

Sham Kakade

Bellman equation

Evaluating policy π:

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

■ Computing the optimal value V* - Bellman equation

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©Sham Kakade

15

Optimal Long-term Plan

Optimal value function $V^*(\mathbf{x})$

Optimal Policy: $\pi^*(\mathbf{x})$

Optimal policy:

$$\pi^*(\mathbf{x}) = \underset{a}{\operatorname{arg\,max}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©Sham Kakade

Interesting fact – Unique value

- $V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$
 - Slightly surprising fact: There is only one V* that solves Bellman equation!
 - ☐ there may be many optimal policies that achieve V*
 - Surprising fact: optimal policies are good everywhere!!!

$$V_{\pi^*}(x) \geq V_{\pi}(x), \ \forall x, \ \forall \pi$$

©Sham Kakade

17

Solving an MDP

Solve Bellman equation

Optimal policy π*(**x**)

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]

. . . .

©Sham Kakad

Value iteration (a.k.a. dynamic programming) - the simplest of all

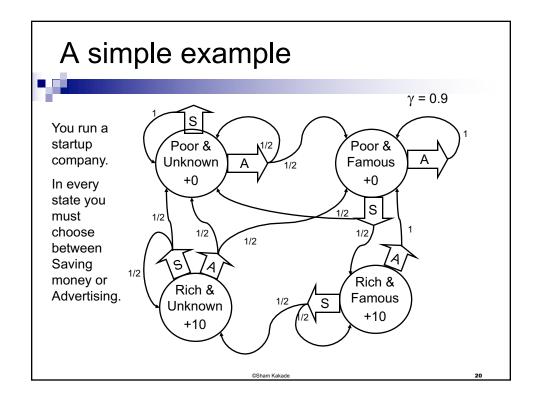
$$V^*(x) = R(x,a) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V^*(x')$$

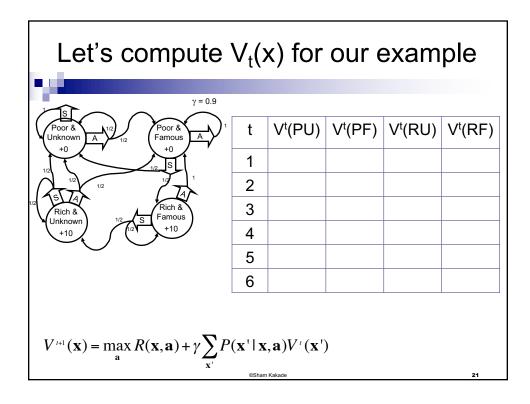
- Start with some guess V⁰
- Iteratively say:

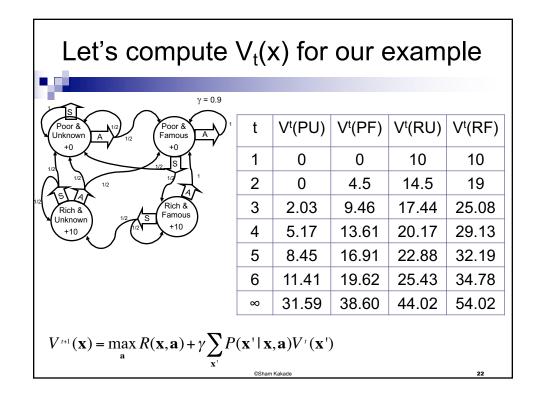
•
$$V^{t+1}(x) \leftarrow \max_{a} R(x,a) + \gamma \sum_{x'} P(x' \mid x,a) V^{t}(x')$$

■ Stop when $||V_{t+1}-V_t||_{\infty} < \varepsilon$ □ means that $||V^*-V_{t+1}||_{\infty} < \varepsilon/(1-\gamma)$

@Sham Kakada



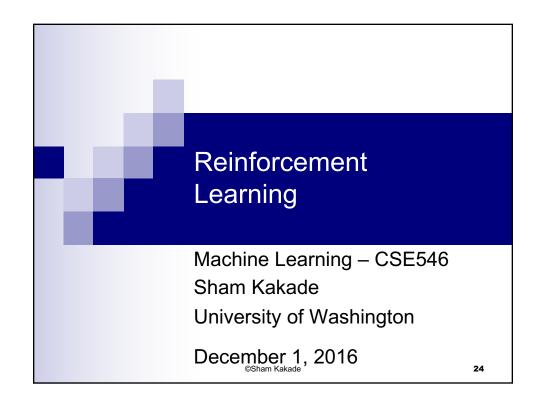




What you need to know ■ What's a Markov decision process □ state, actions, transitions, rewards □ a policy

- □ value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - ☐ Bellman equation
- Solving Bellman equation
 - □ with value iteration, policy iteration and linear programming

@Sham Kakada



The Reinforcement Learning task

World: You are in state 34.

Your immediate reward is 3. You have possible 3 actions.

Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I'll take action 1.

World: You're in state 34 (again).

Your immediate reward is 3. You have possible 3 actions.

@Shan2Kakade

Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - $\hfill\Box$ in some versions of the problem size of ${f X}$ and ${f A}$ unknown
- Interact with world at each time step t:
 - $\hfill\square$ world gives state \boldsymbol{x}_t and reward r_t
 - □ you give next action a_t
- Goal: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward

@Shan**2K**akade

The "Credit Assignment" Problem

```
I'm in state 43, reward = 0, action = 2

" " " 39, " = 0, " = 4

" " " 22, " = 0, " = 1

" " " 21, " = 0, " = 1

" " " 13, " = 0, " = 1

" " " 54, " = 0, " = 2

" " " 26. " = 100,
```

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there?? This is the Credit Assignment problem.

27

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - □ is this the best I can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - ☐ at the risk of missing out on some large reward somewhere
- Exploration: should I look for a region with more reward?
 - □ at the risk of wasting my time or collecting a lot of negative reward

©Shan**2**&akade

Two main reinforcement learning approaches

- Model-based approaches:
 - \square explore environment, then learn model (P(x'|x,a) and R(x,a)) (almost) everywhere
 - □ use model to plan policy, MDP-style
 - □ approach leads to strongest theoretical results
 - □ works quite well in practice when state space is manageable
- Model-free approach:
 - □ don't learn a model, learn value function or policy directly
 - □ leads to weaker theoretical results
 - □ often works well when state space is large

©Shan2¶akade