

Announcements: HW4 posted Poster Session Thurs, Dec 8 TAs (or your CSE friends) can help with printing Today: Review: Deep Learning Convolutional Neural Nets (+ RNNs?) Start: RL Also: MusicNet is out!

Poster Session

- - Thursday Dec 8, 9-11:30am
 - □ Please arrive 20 mins early to set up
- Everyone is expected to attend
- Prepare a poster
 - □ We provide poster board and pins
 - □ Both one large poster (recommended) and several pinned pages are OK.
- Capture
 - □ Problem you are solving
 - Data you used
 - ML methodology
 - □ Results

■ Prepare a 1-minute speech about your project

- Two instructors will visit your poster separately
- Project Grading: scope, depth, data

Sham Kakade

Hidden layer

■ 1-hidden layer:

$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

Forward propagation for 1-hidden layer - Prediction

■ 1-hidden layer:

$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

Gradient descent for 1-hidden layer -Back-propagation: Computing $\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$ Dropped w₀ to max

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$

Dropped w₀ to make derivation simpler

$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'} g(\sum_{i'} w_{i'}^{k'} x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_k} = \sum_{j=1}^m -[y^j - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_k}$$

Gradient descent for 1-hidden layer – Back-propagation: Computing

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$

Dropped w₀ to make derivation simpler

$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'} x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_i^k} = \sum_{j=1}^m -[y - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_i^k}$$

Optimization Issues

- Initialization
 - □ Want non-zero gradients
 - ☐ Init with a 'sensitivity analysis'
 - ☐ Want to start with a point not to far from to some local opt
- Needs lots of Training data?
- Learning rates
 - □ Set by hand
 - ☐ Turn down when learning slows down
- Tensor Flow Defaults?

⊝Sham Kakada

11

Regularization

- Needs lots of Training data?
 - □ Sometimes
 - □ (briefly) Share MusicNet case study
- Regularization (sometimes important?)
 - □ L2?
 - □ Dropout?

©Sham Kakade

"Theory"

- L(w) is out total loss on N data points
- Suppose L(w) is R-smooth
- Let's do batch gradient descent.
- What can we say?

©Sham Kakade

Contains slides from...

- LeCun & Ranzato
- Russ Salakhutdinov
- Honglak Lee

©Sham Kakade

15

Neural Networks in Computer Vision

- Neural nets have made an amazing come back
 - □ Used to engineer high-level features of images
- Image features:

Sham Kakade

Parameter sharing

- - Fundamental technique used throughout ML
 - Neural net without parameter sharing:
 - Sharing parameters:

©Sham Kakade

Pooling/Subsampling

Convolutions act like detectors:

- But we don't expect true detections in every patch
- Pooling/subsampling nodes:

©Sham Kakade

RNNs and LSTMs Sham Katade Sham Katade