

Announcements: Project Milestones due date passed. HW3 due on Monday It'll be collaborative HW2 grades posted today Out of 82 points Today: Questions: Review: Generalization Start: unsupervised learning

Generalization/Model Comparisons Machine Learning - CSE446 Sham Kakade University of Washington November 1, 2016

What method should I use?

- Linear regression, logistic, SVMs?
- No regularization? Ridge? L1?
- I ran SGD without any regularization and it was ok?

Generalization

- You get N samples.
- You learn a classifier/regression f^.
- How close are you to optimal?

$$L(f^{*})-L(f^{*}) < ???$$

■ (We can look at the above in expectation or with 'high' probability).

Finite Case:

- You get N samples.
- You learn a classifier/regressor f[^] among K classifiers:

$$L(f^{\wedge})-L(f^{*}) < \sqrt{\frac{\log 15}{N}}$$

$$robality = 1-5$$

Linear Regression

- N samples, d dimensions.
- L is the square loss.
- w[^] is the least squares estimate.

$$L(w^{\wedge})-L(w^{*}) < O(d/N)$$

■ Need about N=O(d) samples

©2016 Sham Kakade

Sparse Linear Regression

 f[^] is best fit line which only uses k features (computationally intractable)

$$L(w^{\wedge})-L(w^{*}) < k \log(d)/N$$

- true of Lasso under stronger assumptions: "incoherence"
- When do like sparse regression??
 - ☐ When we believe there are a few of GOOD features.

©2016 Sham Kakade

Learning a Halfspace

- You get N samples, in D dimensions.
- L is the 0/1 loss.
- is the empirical risk minimizer

 ## is the empirical risk mini (computationally infeasible to compute)

$$L(w^{\wedge})-L(w^{*}) < \sqrt{d \log(N)/N}$$

Need N=O(d) samples

■ Need N=O(d) samples

What about Regularization?

- - Let's look at (dual) constrained problem
 - Minimize:

min L^(w)
such
$$||w||_{??} < W_+$$

■ Where L^ is our training error.

Optimization and Regularization?

- I did SGD without regularization and it was fine?
- "Early stopping" implicitly regularizes (in L2)

©2016 Sham Kakade

11

L2 Regularization

- Assume ||w||₂ < W₂ ||x||₂ < R₂
- L is some convex loss (logistic,hinge,square)
- w[^] is the constrained minimizer (computationally tractable to compute)

$$L(w^{\wedge})-L(w^{*}) \leq W_2 R_2 / \sqrt{N}$$

■ DIMENSION FREE "margin" Bound!

©2016 Sham Kakade

12

L1 Regularization

- Assume ||w||₁ < W₁ ||x||_∞ < R_∞
- L is some convex loss (logistic,hinge,square)
- w[^] is the constrained minimizer (computationally tractable to compute)

$$L(w^{\wedge})-L(w^{*}) < \frac{W_{1}R_{\infty}log(d)}{\sqrt{N}}$$

Promotes sparsity, one can think of W1 as the "sparsity level/k" (mild dimension dependence, log(d).

©2016 Sham Kakade

13

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - □ e.g., text data has
- **Dimensionality reduction**: represent data with fewer dimensions
 - □ easier learning fewer parameters
 - □ visualization hard to visualize more than 3D or 4D
 - □ discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

©2016 Sham Kakade

©Sham Kasade 2016

Lower dimensional projections

 Rather than picking a subset of the features, we can new features that are combinations of existing features

■ Let's see this in the unsupervised setting □ just **X**, but no Y

©2016 Sham Kakade

©Sham Kalade 2016

Principal component analysis – basic idea

- Project n-dimensional data into k-dimensional space while preserving information:
 - $\hfill\Box$ e.g., project space of 10000 words into 3-dimensions
 - □ e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

©2016 Sham Kakade

©Sham Kå&ade 2016

Linear projections, a review

- Project a point into a (lower dimensional) space:
 - \square point: $\mathbf{x} = (x_1, ..., x_d)$
 - \square select a basis set of basis vectors $(\mathbf{u}_1,...,\mathbf{u}_k)$
 - we consider orthonormal basis:
 - □ **u**_i•**u**_i=1, and **u**_i•**u**_j=0 for i≠j
 - \square select a center \overline{x} , defines offset of space
 - □ **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x}-\mathbf{x}) \cdot \mathbf{u}_i$
 - minimum squared error

©2016 Sham Kakade

@Sham K**19**ade 2016

PCA finds projection that minimizes reconstruction error

- Given N data points: $\mathbf{x}^i = (x_1^i, ..., x_d^i)$, i=1...N
- Will represent each point as a projection:

- PCA:
 - □ Given k<<d, find (u₁,...,u_k) minimizing reconstruction error:

$$error_k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

©2016 Sham Kakade

©Sham Kanade 201

Understanding the reconstruction error

Note that **x**ⁱ can be represented exactly by d-dimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^{\mathsf{d}} z_j^i \mathbf{u}_j$$

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$
$$z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

 \Box Given k<<d, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

Reconstruction error and

covariance matrix
$$error_k = \sum_{i=1}^{N} \sum_{j=k+1}^{d} [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

Minimizing reconstruction error and eigen vectors

Minimizing reconstruction error equivalent to picking orthonormal basis (u₁,...,u_d) minimizing:

$$error_k = \sum_{j=k+1}^{d} \mathbf{u}_j^T \Sigma \mathbf{u}_j$$

- Eigen vector:
- Minimizing reconstruction error equivalent to picking (u_{k+1},...,u_d) to be eigen vectors with smallest eigen values

©2016 Sham Kakad

©Sham K9Rade 201

Basic PCA algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $\square X_c \leftarrow X \overline{X}$
- Compute covariance matrix:
 - $\square \quad \Sigma \leftarrow 1/N \; \mathbf{X_c}^\mathsf{T} \; \mathbf{X_c}$
- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

©2016 Sham Kakade

©Sham Kalkade 2016

Scaling up Covariance matrix can be really big! Say, only 10000 features finding eigenvectors is very slow... Use singular value decomposition (SVD) finds to k eigenvectors great implementations available, e.g., python, R, Matlab svd

PCA using SVD algoritm

- - Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 □ X_c ← X X
- Call SVD algorithm on X_c ask for k singular vectors
- **Principal components:** k singular vectors with highest singular values (rows of **V**^T)
 - □ Coefficients become:

©2016 Sham Kakade

©Sham Kalkade 201

What you need to know

- Dimensionality reduction
 - □ why and when it's important
- Simple feature selection
- Principal component analysis
 - □ minimizing reconstruction error
 - □ relationship to covariance matrix and eigenvectors
 - □ using SVD

©2016 Sham Kakade

©Sham Kakade 2016