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Announcements:
" JEE
m Project Milestones due date passed.
m HW3 due on Monday
It'll be collaborative

m HW?2 grades posted today
Out of 82 points

m Today:
Questions:
Review: Generalization
Start: unsupervised learning




Generalization/Model
Comparisons
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What method should | use?
" JE

m Linear regression, logistic, SVMs?

m No regularization? Ridge? L17?

m | ran SGD without any regularization and it was
ok?




Generalization
" JEE
m You get N samples.
m You learn a classifier/regression .

m How close are you to optimal?

L(FM)-L(F*) @

m (We can look at the above in expectation or with
‘high’ probability).

Finite Case:
" JEE
m You get N samples.
m You learn a classifier/regressor f* among K

classifiers:
( y
L(fA)_L(f*) < /%7\ §>
v

/0




Linear Regression
" JEE
m N samples, d dimensions.
m L is the square loss.
m W is the least squares estimate.

L(wh)-L(w*) < O(d/N)

m Need about N=0O(d) samples
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Sparse Linear Regression
" A
m N samples, d dimensions, L is the square loss.

m A is best fit line which only uses k features
(computationally intractable)

L(w?%)-L(w™) <klog(d)/N

m true of Lasso under stronger assumptions:
“incoherence”

m When do like sparse regression??
When we believe there are a few of GOOD features.




Learning a Halfspace
" JEE
m You get N samples, in D dimensions.
m L is the 0/1 loss.
m £ is the empirical risk minimizer

@putationally infeasible to compute)

L(WA)-L(w*) < \/d Tog(N)/N

m Need N=0O(d) samples Q Ve —+ G @f\/"

What about Regularization?
" JEE

m Let’s look at (dual) constrained problem

m Minimize:

min LAw)
such ||w||>, < W,

m Where LA is our training error.




Optimization and Regularization?
" JE
m | did SGD without regularization and it was fine?

m “Early stopping” implicitly regularizes (in L2)

L2 Regularization
" JEE
m Assume [|w[[, <W; [|x][; < R;
m L is some convex loss (logistic,hinge,square)

m w” is the constrained minimizer (computationally
tractable to compute)

L(W")-L(W*)<W,R,/VN

m DIMENSION FREE “margin” Bound!




L1 Regularization
" J
m Assume [|w||; < Wy [Ix]], < R,
m L is some convex loss (logistic,hinge,square)

m wW” is the constrained minimizer (computationally
tractable to compute)

L(W/\)_L(W*)<W1Roolog(d)

VN

m Promotes sparsity, one can think of W1 as the
“sparsity level/k” (mild dimension dependence,

log(d).
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Dimensionality reduction
" JEE
m Input data may have thousands or millions of
dimensions!
e.g., text data has
m Dimensionality reduction: represent data with
fewer dimensions
easier learning — fewer parameters
visualization — hard to visualize more than 3D or 4D

discover “intrinsic dimensionality” of data
= high dimensional data that is truly lower dimensional
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Lower dimensional projections
" JEE

m Rather than picking a subset of the features, we
can new features that are combinations of
existing features

m Let’s see this in the unsupervised setting
just X, butno Y
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Linear projection and reconstruction
" S

X2

project into

1-dimension

X1

feconstruction:
only know z4,
what was (x1,Xz)
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Principal component analysis —
_ basic idea
S

m Project n-dimensional data into k-dimensional
space while preserving information:

e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

m Choose projection with minimum reconstruction
error
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Linear projections, a review

m Project a point into a (lower dimensional) space:

point: x = (X4,...,Xq)
select a basis — set of basis vectors — (uy,...,uy)

= we consider orthonormal basis:

uieui=1, and ujeu;=0 for i#j

select a center — X, defines offset of space
best coordinates in lower dimensional space defined
by dot-products: (zi,...,2«), Z = (X-X)eu;

= Minimum squared error
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PCA finds projection that minimizes
reconstruction error
" BN

m Given N data points: x' = (x4',...,X4), i=1...N
m Will represent each point as a projection:

k N
L _ . 1 . i 1 —
=%+ Z zju; where: x=— Y x' and z;j =" —%) u;
j=1 N j=1
m PCA: X2
Given k<<d, find (uq,...,uy) o o
minimizing reconstruction error: o o

N
errory = Y (x' — %92 -
i=1 '
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X1




Understanding the reconstruction
error H=%t Y sy
JE— =1

z; = (x' = X) -y

i
m Note that x' can be represented Given ke<d, find (us.....04)

exaCtly by d-dim?nsional projection: minimizing reconstruction error:
] ~ h ; N . .
Xl =X + L Z;ll] error, = Z (XZ . )A(Z)2
J=1 i=1

m Rewriting error:
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Reconstruction error and
_ covariance matrix
S

N
N d ; — 1 iz i =N\T
errory = Z Z [uj S(x— >—()12 > = K 4_5 1(X — X)(X — X)
i=1j=k+1 i=
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Minimizing reconstruction error and

eiﬁen vectors

m Minimizing reconstruction error equivalent to picking

m Eigen vector:

orthonormal basis (uy,...,uyq) minimizing:
d

error, =N )" uJTZuj
j=ht1

m Minimizing reconstruction error equivalent to picking

(uk+1,...,Ug) to be eigen vectors with smallest eigen values
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Basic PCA algoritm

Start from m by n data matrix X

Recenter: subtract mean from each row of X
X, <« X=X

Compute covariance matrix:
T« 1N X.T X,

Find eigen vectors and values of

Principal components: k eigen vectors with
highest eigen values
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PCA example

k
oi = i
X'=x4+ E Zju;
Jj=1
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PCA example — reconstruction
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Eigenfaces [Turk, Pentland '91]
S

m Input images: m Principal components:

2383 WO

ham Kakade (©Sham K2Rade 2016

Eigenfaces reconstruction

m Each image corresponds to adding 8 principal
components:
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Scaling up
" JE
m Covariance matrix can be really big!
Yisdbyd
Say, only 10000 features
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)
finds to k eigenvectors

great implementations available, e.g., python, R,
Matlab svd
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SVD

" JEE
m Write X=WSVT
X « data matrix, one row per datapoint
W « weight matrix, one row per datapoint — coordinate of x' in eigenspace
S « singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue ;
VT « singular vector matrix
= in our setting each row is eigenvector v;
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PCA using SVD algoritm
" J
Start from m by n data matrix X
Recenter: iubtract mean from each row of X
X. X=X
Call SVD algorithm on X; — ask for k singular vectors

Principal components: k singular vectors with highest
singular values (rows of V)

Coefficients become:
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What you need to know
" JEE
m Dimensionality reduction
why and when it’'s important
m Simple feature selection
m Principal component analysis
minimizing reconstruction error

relationship to covariance matrix and eigenvectors
using SVD

©2016 Sham Kakade ©Sham KaRade 2016

16



