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Announcements:
"
m Project Milestones coming up

m HW?2
You've implemented GD, SGD, etc...

m HW3 posted this week. i

Lef's get state of the arton MNIST! = |- & 7~
It'll be collaborative
/U< \/7Z C/q; >,
Nt T
] Today: e v . i;

Review: the perceptron, margins, and separability
Kernels & SVMs
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Support Vector Machines

STwo ldeas Mixed up)

m 1) An attempt to better optimize the classification
Ioss?

Questionable?

Latent SVMs are interesting.
m 2) Kernels

Warp the feature space o) 7 ol /@ S S e ?
This idea is actually more general _
F o / ;$ L (’.7(
/ € /FFSK <//
m The success of SVMS? (o he
e.g . L5 s




Linear Separability: More formally, Using Margin

m Data linearly separable, if there exists
avector - «w.
amargin  \/ .t Y (W, ¥,y > g

m Such that
-— >




Perceptron Analysis: Linearly Separable Case

" A
= Theorem [Block, Novikoff]: [ 57 fos T )

Given a sequence of labeled examples: ¢
VW% r/‘7, ;, A

Each feature vector has bounded norm: // Y’é [[ £ /4__ s LLJ%>
o ,
/’ |

If dataset is linearly separable:

m Then the number of mistakes made by the online perceptron on any such sequence
is bounded by

[ wy|”

.

©2016 Sham Kakade 5



Beyond Linearly Separable Case
"

m Perceptron algorithm is super cool!

No assumption about data distribution!

m Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's

done for ever! + ﬁ\ -
= Even if you see infinite data &
4 * = =
m However, real world not linearly separable T —

Can’t expect never to make mistakes again -

P g . + d‘
=+ -
=II:II= [ ]
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What if the data is not linearly separable?

Use features of features
of features of features....

D(x): R™ s F

= X
Xl
Cﬁ(k): ><3

Feature space can get really large really quickly!



Higher order polynomials
- S

d+m—1 d+m—1)]
num. terms — T = ( )
d d'(m—1)!
m — input features
n ™ d — degree of polynomial
£ d=4 J1eE OTROY
9
.C—E 600 /—
E 500 + N
o
o
O 4m}
- )
8 300 - / -
8 200 - g T d=3
-
= 100t .
< . . . . | d=2
N 2 3 4 5 B 7 8 g 10 grOWS faSt|
number of input dimensions d=6,m=100

about 1.6 billion terms
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Perceptron Revisited
= S

= Given weight vector wit), predict point x by: () @ \/
5y 0 FOR
m Mistake at time t: w(t*!) € w() + y® x(®) 7

m  Thus, write weight vector in terms of mistaken data points only:
Let M® be time steps up to t when mistakes were m)ade: )
“ ) SRR
ST R R
m Prediction rule now: o ROy

M‘*o(& (g \)
$g /W(@‘XB = 59 e [f \ﬁo;d ’Xw

S g = §(<)) = s1ga( 2 5V P ) S O

m When using high dimensional featur’es:\’XJéM/’U
D&M~ ) ) )
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a= [ Y
L)
v

Dot-product of polynomials

- S mls |
d(u) - P(v) = polynor\mals of degree exactly d
e C{! ¢(a\, U - v
4(\/&\:(/&
_ L 4, ' VAR I Y
TR Blu) - @) co
U v B
VoL (M'AV>1
U, A,
e
‘é\/ S 9no- v | Cﬁ/QBCA[‘/): [q.\,>

j (5@««3 ccs’n;‘}/c/c‘?éhdv\

[

“kéf”‘ Q/ +-,clc



Finally the Kernel Trick!!! /.4~ =

(Kernelized Perceptron I (xc/y/7: g/(sc) )
"
m Every time you make a mistake, remember (x®,y®)

m Kernelized Peroeptron prediction for x:

sign(w (1) . Z y(3)¢ (J) ) - H(x)

ieM® /)

Z y D E(x0) x)

jEM®



Polynomial kernels
" J

m All monomials of degree d in O(d) operations:
d(u)-P(v) = (uv)? = polynomials of degree exactly d

m How about all monomials 0}‘ degree up to d?
— 4 e
Solution 0: (o7 e = fe = e

y -
4 (v 60z S (1) (u.v)
o %ggl/te”so'}i;‘i@,”%ﬁ-‘m / e
2
)/f((/l/‘\/>/—)- (ud\/\i# (\/(/\> = /‘/w\/"f)\ U(

. o de o K (e v)= [“"/v”)
9@/} < /’0/7//'3'”"‘/5 / oh/:/“w
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Common kernels
" J
m Polynomials of degree exactly d
K(u,v) = (u-v)?
m Polynomials of degree up to d
Ku,v)=(u-v+ 1)¢
m Gaussian (squared exponential) kernel

lu —v]|
K(u,v) = ex
(u,v) p( S

m Sigmoid
K(u,v) =tanh(hpu-v +v)

©2016 Sham Kakade
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Mercer's Theorem
» B

m \When do we have a Kernel K(x,x’) QA
m Definition 1: when there exists an embedd|
(%) .
m Mercer's Theorem.
K(x,x') is a valid kernel if and only if K is a positive

semi-definite. e LK
W/ PSDin the following sense: /' * »
TEY et M= IO g )

b e M oo o+ be Vs  cseen fa/z’%\m:ﬁ{e

v\#\‘/ﬂc“}f""’l s 'S j £ (<) /((Ky/%&/x/)>z§
/KJY
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Linear classifiers — Which line is better?



Pick the one with the largest margin!

"
& “confidence” = 3’/ (w - x7 + wp)
x
4 S
oF ]
AL -
T & ¥ -
+ L T -



Maximize the margin

" J
]
B
x
ar 3
afs =
.8 -
T & ¥ -
+ L T -
E.']:' [ [
max
Y, W,WQ

yj(WX]—I_wO)Z’)/?\V/jE{l?aN}
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But there are many planes...

" JE
]
B
x
a8 3
oF .
.8 -
T & ¥ -
+ L T -



Review: Normal to a plane

"
()
]

=
+
X
T s




A Convention: Normalized margin —
Canonical hyperplanes 7 = x7 4+ o

margin 2,}/
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Margin maximization using

_canonical h}/perplanes

+ O max
ooy Unnormalized ~ w,wq
S roblem: .
; + P yJ(W°XJ—‘,—w0)Z’)/,\V/]E{l,...,N}
X
i * o K
=~ o= Normalized Problem:
+ & + =
+ =Illl= =

Margin 2)/

min |l
» WO

yj(W-Xj—I-wo)Zlavje{lv'“’N}
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Support vector machines (SVMs)

min [w||3
W,Wo

v (w-x! +wo) >1,Vje{l,...,N}

= m Solve efficiently by many methods,

e.g.,
quadratic programming (QP)
m  Well-studied solution algorithms

Stochastic gradient descent

m Hyperplane defined by support
vectors
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What if the data is not linearly

] segarable?
Use features of features

+ of features of features....




What if the data is still not linearly

~Se arable? min (||

yj(w-xj—l—wo)zl Vg

4 T _ m |fdatais not linearly separable, some
& = points don’t satisfy margin constraint:
+F -
T 4 b =
o - m How bad is the violation?
v %
% = =

m Tradeoff margin violation with ||w||:
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SVMs for Non-Linearly Separable meet

my friend the Perceptron...
"
m Perceptron was minimizing the hinge loss:
N

Z (_yj (W : Xj + wo))+

7=1
B SVMs minimizes the regularized hinge loss!!

||w||2+CZ (1 =1/ (w-x) +wp)),
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Stochastic Gradient Descent for SVMs
= S

m Perceptron minimization: m SVMs minimization:
N N
> (v (wexT +wp)), w3 +CD> (1 —y/(w-x7 +w)),
Jj=1 j=1

m SGD for Perceptron: m SGD for SVMs:

wttD w® 1 [y(w(W(t) xt) < o} % ®)
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SVMs vs logistic regression
"

m \We often want probabilities/confidences (logistic
wins here)

m For classification loss, they are comparable

m Multiclass setting:

Softmax naturally generalizes logistic regression
SVMs have

m \What about good old least squares”?



Multiple Classes
" A
m One can generalize the hinge loss
If no error (by some margin) -> no loss
If error, penalize what you said against the best

m SVMs vs logistic regression

We often want probabilities/confidences (logistic wins
here)

For classification loss, they are

m Latent SVMs

When you have many classes it’s difficult to do
logistic regression

m 2) Kernels
Warp the feature spage. ... uee 30
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Slack variables — Hinge loss

"
minimizey ; W.W

- (wx;+b)y; 21,V
. L
& -
s . 4 - -
= 4}:#4}’ - .
I

m [f margin , 1, don’t care

m [f margin < 1, pay linear
penalty
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Side note: What's the difference between

SVMs and logistic regression?
" A

SVM: Logistic regression:
minimizey, w.w+CY,§; P(Y =1|2,w) = 1
(W.Xj + b) y; > 11— gj, Vj 1 4+ e—(W.x+b)

§; =0, Vj Log loss:
—InP(Y =1]z,w) = In(14e (WxHD)

AN

\\\
.

\\ l
0 2
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What about multiple classes?

O o
O (o) (o)
© ®
+ © © -
:ﬂ: .
:ﬂ: [
T ok ¥ _ N
3y
I:II:II:I I:II:II:I [ pr—



One against Al

© o0 o
© o
()
+ o
dL

+  m
+ 4 7 e

+ op ¥ = =

Learn 3 classifiers:



Learn 1 classifier: Multiclass SVM

"
Simultaneously learn 3 sets of weights

O o
Ooo 0
& °
o (o) =
ok -
'1}3.4}:4}: = =
o - "
b
4}=¢ _ _

W(yj).Xj + (W) > W(y’).xj + b)) 4 1, vy £ yi, VJ



Learn 1 classifier: Multiclass SVM
" A
minimizey , >, w¥) w) C>5&5
W(yj).Xj 4+ plyi) > W(y').xj (W) 11 — &, Yy £y, Vi

§; >0, Vy
© o
o oo o
+ ° 6
ol © =
4 =
#4}:4}: = =
¢ 4 T



