Announcements:

- Project Milestones coming up
- HW2
 - You’ve implemented GD, SGD, etc…
- HW3 posted this week.
 - Let’s get state of the art on MNIST!
 - It’ll be collaborative

Today:

- Review: the perceptron, margins, and separability
- Kernels & SVMs
Support Vector Machines (Two Ideas Mixed up)

1) An attempt to better optimize the classification loss?
 - Questionable?
 - Latent SVMs are interesting.

2) Kernels
 - Warp the feature space
 - This idea is actually more general

The success of SVMS?
Linear Separability: More formally, Using Margin

- Data linearly separable, if there exists
 - a vector
 - a margin
- Such that
 \[y_t (w_k, x_t) \geq 1 \]
Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples:
 - Each feature vector has bounded norm:
 - If dataset is linearly separable:

- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

\[\| \mathbf{w}_t \|^2 \]
Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it’s done for ever!
 - Even if you see infinite data

- However, real world not linearly separable
 - Can’t expect never to make mistakes again
Kernels

Machine Learning – CSE446
Sham Kakade
University of Washington

November 1, 2016

©2016 Sham Kakade
What if the data is not linearly separable?

Use features of features of features of features....

\[\Phi(x) : \mathbb{R}^m \rightarrow F \]

Feature space can get really large really quickly!
Higher order polynomials

\[
\text{num. terms} = \binom{d + m - 1}{d} = \frac{(d + m - 1)!}{d!(m - 1)!}
\]

- \(m\) – input features
- \(d\) – degree of polynomial

- \(d = 2\)
- \(d = 3\)
- \(d = 4\)

The number of monomial terms grows fast! For \(d = 6, m = 100\), about 1.6 billion terms.
Perceptron Revisited

- Given weight vector $w^{(t)}$, predict point x by:

- Mistake at time t: $w^{(t+1)} = w^{(t)} + y^{(t)} x^{(t)}$

- Thus, write weight vector in terms of mistaken data points only:
 - Let $M^{(t)}$ be time steps up to t when mistakes were made:
 $$w^{(t)} = \sum_{j \in M^{(t)}} y^{(j)} x^{(j)}$$

- Prediction rule now:
 $$\text{sign} (w^{(t)} \cdot x) = \text{sign} \left(\sum_{j \in M^{(t)}} y^{(j)} x^{(j)} \right)$$

- When using high dimensional features:
 $$\text{sign} (w^{(t)} \phi(x)) = \text{sign} \left(\sum_{j \in M^{(t)}} y^{(j)} \phi(x^{(j)}) \cdot \phi(x) \right)$$

©2016 Sham Kakade
Dot-product of polynomials

$\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d$

$d=1$

$\Phi(u) \cdot \Phi(v) = \langle u, v \rangle$

$d=2$

$\Phi(u) = \begin{pmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{pmatrix}$

$\Phi(u) \cdot \Phi(v) = \langle u, v \rangle^2$

"Kernel trick"

for some $\langle u, v \rangle$
Finally the Kernel Trick!!!

(Kernelized Perceptron)

- Every time you make a mistake, remember \((x^{(t)}, y^{(t)}) \)

- Kernelized Perceptron prediction for \(x \):

\[
\text{sign}(w^{(t)} \cdot \phi(x)) = \sum_{j \in M^{(t)}} y^{(j)} \phi(x^{(j)}) \cdot \phi(x) \\
= \sum_{j \in M^{(t)}} y^{(j)} k(x^{(j)}, x)
\]
Polynomial kernels

- All monomials of degree d in $O(d)$ operations:
 \[\Phi(u) \cdot \Phi(v) = (u \cdot v)^d = \text{polynomials of degree exactly } d \]

- How about all monomials of degree up to d?
 - Solution 0:
 \[\phi(u \cdot v) = \sum_{i=0}^{d} \binom{d}{i} (u \cdot v)^i \]
 - Better solution:
 \[\phi(u \cdot v) = (u \cdot v)^1 + (u \cdot v)^2 + (u \cdot v)^d \]
 get all polynomials up to d with
 \[\kappa(u \cdot v) = (u \cdot v + 1) \]
Common kernels

- Polynomials of degree exactly d
 \[K(u, v) = (u \cdot v)^d \]

- Polynomials of degree up to d
 \[K(u, v) = (u \cdot v + 1)^d \]

- Gaussian (squared exponential) kernel
 \[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]

- Sigmoid
 \[K(u, v) = \tanh(\eta u \cdot v + \nu) \]
Mercer’s Theorem

- When do we have a Kernel $K(x,x')$?
- Definition 1: when there exists an embedding $K(x,x') = \phi(x) \cdot \phi(x')$
- Mercer’s Theorem:
 - $K(x,x')$ is a valid kernel if and only if K is a positive semi-definite.
 - PSD in the following sense:

Let $M_{ij} = K(y_i, y_j)$, the M must be positive semi-definite

A function f satisfies

$$\int f(x) K(x,x') f(x') \geq 0$$
Support Vector Machines

Machine Learning – CSE446
Sham Kakade
University of Washington

November 1, 2016

©2016 Sham Kakade
Linear classifiers – Which line is better?
Pick the one with the largest margin!

"confidence" = \(y^j (w \cdot x^j + w_0) \)
Maximize the margin

\[
\max_{\gamma, \mathbf{w}, w_0} \gamma
\]

\[
y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0) \geq \gamma, \forall j \in \{1, \ldots, N\}
\]
But there are many planes...
Review: Normal to a plane

\[x^j = \bar{x}^j + \alpha \frac{w}{\|w\|} \]
A Convention: Normalized margin – Canonical hyperplanes

\[x^j = \bar{x}^j + \alpha \frac{w}{||w||} \]
Margin maximization using canonical hyperplanes

Unnormalized problem:

\[
\max_{\gamma, w, w_0} \gamma \\
y^j (w \cdot x^j + w_0) \geq \gamma, \forall j \in \{1, \ldots, N\}
\]

Normalized Problem:

\[
\min_{w, w_0} \|w\|^2_2 \\
y^j (w \cdot x^j + w_0) \geq 1, \forall j \in \{1, \ldots, N\}
\]
Support vector machines (SVMs)

\[
\min_{\mathbf{w}, w_0} \|\mathbf{w}\|_2^2 \\
y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0) \geq 1, \forall j \in \{1, \ldots, N\}
\]

- Solve efficiently by many methods, e.g.,
 - quadratic programming (QP)
 - Well-studied solution algorithms
 - Stochastic gradient descent
- Hyperplane defined by support vectors
What if the data is not linearly separable?

Use features of features of features of features of features of features....
What if the data is still not linearly separable?

If data is not linearly separable, some points don’t satisfy margin constraint:

\[
\begin{align*}
\min_{\mathbf{w}, w_0} & \quad ||\mathbf{w}||^2_2 \\
\text{s.t.} & \quad y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0) \geq 1, \quad \forall j
\end{align*}
\]

- If data is not linearly separable, some points don’t satisfy margin constraint:
- How bad is the violation?
- Tradeoff margin violation with $||\mathbf{w}||$:
SVMs for Non-Linearly Separable meet my friend the Perceptron…

- Perceptron was minimizing the hinge loss:
 \[\sum_{j=1}^{N} \left(-y^j (w \cdot x^j + w_0) \right)_+ \]

- SVMs minimizes the regularized hinge loss!!
 \[\|w\|^2_2 + C \sum_{j=1}^{N} \left(1 - y^j (w \cdot x^j + w_0) \right)_+ \]
Stochastic Gradient Descent for SVMs

- **Perceptron minimization:**
 \[\sum_{j=1}^{N} (-y^j(w \cdot x^j + w_0))_+ \]

- **SGD for Perceptron:**
 \[w^{(t+1)} = w^{(t)} + y^{(t)}(w^{(t)} \cdot x^{(t)}) \mathbb{1}[y^{(t)}(w^{(t)} \cdot x^{(t)}) \leq 0] y^{(t)}x^{(t)} \]

- **SVMs minimization:**
 \[\|w\|_2^2 + C \sum_{j=1}^{N} (1 - y^j(w \cdot x^j + w_0))_+ \]

- **SGD for SVMs:**
SVMs vs logistic regression

- We often want probabilities/confidences (logistic wins here)
- For classification loss, they are comparable

Multiclass setting:
- Softmax naturally generalizes logistic regression
- SVMs have

What about good old least squares?
Multiple Classes

- One can generalize the hinge loss
 - If no error (by some margin) -> no loss
 - If error, penalize what you said against the best

- SVMs vs logistic regression
 - We often want probabilities/confidences (logistic wins here)
 - For classification loss, they are

- Latent SVMs
 - When you have many classes it’s difficult to do logistic regression

- 2) Kernels
 - Warp the feature space
Slack variables – Hinge loss

\[\text{minimize}_{w,b} \quad w \cdot w \]
\[\left(w \cdot x_j + b \right) y_j \geq 1 \quad , \forall j \]

- If margin ≥ 1, don’t care
- If margin < 1, pay linear penalty
Side note: What’s the difference between SVMs and logistic regression?

SVM:

\[
\begin{align*}
\text{minimize}_{w,b} & \quad w \cdot w + C \sum_j \xi_j \\
(w \cdot x_j + b) y_j & \geq 1 - \xi_j, \quad \forall j \\
\xi_j & \geq 0, \quad \forall j
\end{align*}
\]

Logistic regression:

\[
P(Y = 1 \mid x, w) = \frac{1}{1 + e^{-(w \cdot x + b)}}
\]

Log loss:

\[
- \ln P(Y = 1 \mid x, w) = \ln \left(1 + e^{-(w \cdot x + b)}\right)
\]
What about multiple classes?
One against All

Learn 3 classifiers:
Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights

\[w^{(y_j)} \cdot x_j + b^{(y_j)} \geq w^{(y')} \cdot x_j + b^{(y')} + 1, \ \forall y' \neq y_j, \ \forall j \]
Learn 1 classifier: Multiclass SVM

\[
\begin{align*}
\text{minimize} & \quad w, b \sum y w(y) \cdot w(y) + C \sum j \xi_j \\
& \quad w(y_j) \cdot x_j + b(y_j) \geq w(y') \cdot x_j + b(y') + 1 - \xi_j, \quad \forall y' \neq y_j, \forall j \\
& \quad \xi_j \geq 0, \forall j
\end{align*}
\]