Kernels and Support Vector Machines

Machine Learning – CSE446
Sham Kakade
University of Washington

November 1, 2016

Announcements:

- Project Milestones coming up
- HW2
 - □ You've implemented GD, SGD, etc...
- HW3 posted this week.
 - □ Let's get state of the art on MNIST!
- = 1.2 %

□ It'll be collaborative

■ Today:

- □ Review: the perceptron, margins, and separability
- ☐ Kernels & SVMs

and senarability

Support Vector Machines (Two Ideas Mixed up)

- 1) An attempt to better optimize the classification loss?
 - Questionable?
 - □ Latent SVMs are interesting.
- 2) Kernels
 - □ Warp the feature space
 - □ This idea is actually more general
- The success of SVMS?

e.g. lib- SVM

900/1055092

©2016 Sham Kakade

Linear Separability: More formally, Using Margin

- Data linearly separable, if there exists
 - □ a vector
 - vector \neg \sim_{\Rightarrow}
 - □ a margin

y+ (w, x+) 21

Such that

Perceptron Analysis: Linearly Separable Case

■ Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- However, real world not linearly separable
 - □ Can't expect never to make mistakes again

Kernels

Machine Learning – CSE446 Sham Kakade University of Washington

November 1, 2016 ©2016 Sham Kakade

What if the data is not linearly separable?

Use features of features of features of features....

$$\Phi(\mathbf{x}): R^m \mapsto F$$

$$\phi(\mathbf{x}) = \begin{pmatrix} x \\ x^2 \\ x^3 \\ \sqrt{x} \end{pmatrix}$$

Feature space can get really large really quickly!

Higher order polynomials

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!}$$

m – input featuresd – degree of polynomial

grows fast! d = 6, m = 100 about 1.6 billion terms

Perceptron Revisited

Given weight vector $\mathbf{w}^{(t)}$, predict point \mathbf{x} by:

Mistake at time t: $w^{(t+1)} \leftarrow w^{(t)} + y^{(t)} x^{(t)}$

- Thus, write weight vector in terms of mistaken data points only:
 - \Box Let M^(t) be time steps up to *t* when mistakes were made:

$$W^{(4)} =$$

Prediction rule now: $Sign(\omega^{(\epsilon)} \times) = sign(\Sigma^{(\epsilon)} \times X)$ When using high dimensional features: $Sign(\omega^{(\epsilon)} \times X) = sign(\Sigma^{(\epsilon)} \times X)$ $Sign(\omega^{(\epsilon)} \times X) = sign(\Sigma^{(\epsilon)} \times X)$ $Sign(\omega^{(\epsilon)} \times X) = sign(\Sigma^{(\epsilon)} \times X)$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) =$ polynomials of degree exactly d

$$d=1$$
 $d(u) \cdot \phi(v) = \overrightarrow{u} \cdot \overrightarrow{v}$
 $d(u) = u$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{$$

Finally the Kernel Trick!!! 44702 (Kernelized Perceptron (44)264)

Every time you make a mistake, remember (x^(t),y^(t))

Kernelized Perceptron prediction for x:

$$sign(\mathbf{w}^{(t)} \cdot \phi(\mathbf{x})) = \sum_{j \in M^{(t)}} y^{(j)} \phi(\mathbf{x}^{(j)}) \cdot \phi(\mathbf{x})$$
$$= \sum_{j \in M^{(t)}} y^{(j)} k(\mathbf{x}^{(j)}, \mathbf{x})$$

©2016 Sham Kakade

Polynomial kernels

$$\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$$
 polynomials of degree exactly d

- How about all monomials of degree up to d?
 - □ Solution 0:

$$\phi(u)\cdot \phi(v) = \frac{1}{2}(4)(u\cdot v)^{2}$$

Better solution:

$$0 = \frac{1}{2} + \frac{1}{2} +$$

Common kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian (squared exponential) kernel,

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Radial Basis Function

Mercer's Theorem

- When do we have a Kernel K(x,x')?
- Definition 1: when there exists an embedding

- Mercer's Theorem:
 - \square K(x,x') is a valid kernel if and only if K is a positive semi-definite.
- - □ PSD in the following sense:

the M most be Pos. semi-definite

Vifunctions's

\(\frac{1}{5}\)

\(\frac{

Support Vector Machines

Machine Learning – CSE446
Sham Kakade
University of Washington

November 1, 2016

Linear classifiers – Which line is better?

©2016 Sham Kakade 17

Pick the one with the largest margin!

Maximize the margin

But there are many planes...

Review: Normal to a plane

A Convention: Normalized margin – Canonical hyperplanes $\mathbf{x}^j = \bar{\mathbf{x}}^j + \alpha \frac{\mathbf{w}}{\mathbf{w}^j}$

22

Margin maximization using canonical hyperplanes

Unnormalized problem:

$$\max_{\gamma, \mathbf{w}, w_0} \gamma$$

$$y^j(\mathbf{w} \cdot \mathbf{x}^j + w_0) \ge \gamma, \forall j \in \{1, \dots, N\}$$

Normalized Problem:

$$\min_{\mathbf{w}, w_0} ||w||_2^2$$
$$y^j(\mathbf{w} \cdot \mathbf{x}^j + w_0) \ge 1, \forall j \in \{1, \dots, N\}$$

Support vector machines (SVMs)

$$\min_{\mathbf{w}, w_0} ||w||_2^2$$

$$y^j(\mathbf{w} \cdot \mathbf{x}^j + w_0) \ge 1, \forall j \in \{1, \dots, N\}$$

- Solve efficiently by many methods, e.g.,
 - quadratic programming (QP)
 - Well-studied solution algorithms
 - □ Stochastic gradient descent
- Hyperplane defined by support vectors

What if the data is not linearly separable?

Use features of features of features of features....

What if the data is still not linearly separable?

$$\min_{\mathbf{w}, w_0} ||w||_2^2$$

$$y^j(\mathbf{w} \cdot \mathbf{x}^j + w_0) \ge 1$$
 , $\forall j$

If data is not linearly separable, some points don't satisfy margin constraint:

How bad is the violation?

Tradeoff margin violation with ||w||:

SVMs for Non-Linearly Separable meet my friend the Perceptron...

$$\sum_{j=1}^{N} \left(-y^{j} (\mathbf{w} \cdot \mathbf{x}^{j} + w_{0}) \right)_{+}$$

SVMs minimizes the regularized hinge loss!!

$$||\mathbf{w}||_2^2 + C \sum_{j=1}^N (1 - y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0))_+$$

Stochastic Gradient Descent for SVMs

Perceptron minimization:

$$\sum_{j=1}^{N} \left(-y^{j} (\mathbf{w} \cdot \mathbf{x}^{j} + w_{0}) \right)_{+}$$

SGD for Perceptron:

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \mathbb{1}\left[y^{(t)}(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}) \le 0\right] y^{(t)}\mathbf{x}^{(t)}$$

SVMs minimization:

$$||\mathbf{w}||_2^2 + C \sum_{j=1}^N (1 - y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0))_+$$

SGD for SVMs:

SVMs vs logistic regression

- We often want probabilities/confidences (logistic wins here)
- For classification loss, they are comparable
- Multiclass setting:
 - Softmax naturally generalizes logistic regression
 - □ SVMs have
- What about good old least squares?

Multiple Classes

- No.
 - One can generalize the hinge loss
 - □ If no error (by some margin) -> no loss
 - If error, penalize what you said against the best
 - SVMs vs logistic regression
 - We often want probabilities/confidences (logistic wins here)
 - □ For classification loss, they are
 - Latent SVMs
 - When you have many classes it's difficult to do logistic regression
 - 2) Kernels
 - ☐ Warp the feature space, ham Kakade

31

Slack variables – Hinge loss

- If margin 1, don't care
- If margin < 1, pay linear penalty</p>

Side note: What's the difference between SVMs and logistic regression?

SVM:

$$\begin{aligned} & \text{minimize}_{\mathbf{w},b} \quad \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \qquad \qquad \xi_{j} \geq 0, \ \forall j \end{aligned}$$

Logistic regression:

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

Log loss:

$$-\ln P(Y = 1 \mid x, \mathbf{w}) = \ln (1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)})$$

What about multiple classes?

34

One against All

Learn 3 classifiers:

Learn 1 classifier: Multiclass SVM

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

©2016 Sham Kakade

Learn 1 classifier: Multiclass SVM

