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Weather prediction revisted

Temperature
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Reading Your Brain, Simple Example
'_.P_ [Mitchell et al

airwise classification accuracy: 85%

Person s Animal
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Classification

m Learn: h X Y
0 X — features
0'Y —target classes

you classify? 2 O
1 Bayes optimal classifier:;

BT (=g 1)

= How do we esti%/ate P(Y|X)?

Link Functions

m Estimating P(Y|X): Why not use standard linear
regression?
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m Combing regression and probability?
1 Need a mapping from real values to [0,1]
1 A link function!




Logistic 1
function e
(or Sigmoid): 1 1 exp(—2)

Logistic Regression
"

m Learn P(Y|X) directly

Assume a particular functional form for link
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Understanding the sigmoid
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Features can be discrete or continuous! . < ©
Logistic Regression — Very convenient!
a Linear classifier T eap(—2) |
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P(Y =0 |X =< Xq,..Xn >) =
( | ! n>) 1+ exp(wo + X w; X;)
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P(Y =1|X
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linear

P(Y =1|X =< X1,..Xn >) =
| " 1+ exp(wg + >; w; X;)

classification
rule!




Optimizing concave function —
Gradient ascent
" A

= Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

Gradient: Vwl(w) = [8l(w) L, Bl(w)],
wQ Own,
Update rule: Aw = 3V wl(w)
Wit Cw® 4 ol(w)

w;
= Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent can be much better

Loss function: ConthlonaI L(lkeuhogjd)
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= Discriminative (logistic regression) loss function:
Conditional Data Likelihood W ) W
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Expressing Conditional Log Likelihood
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Maximizing Conditional Log L|keI|hood

PO = 01X, W) = 1+ml)(uo+)_ wiX;)

eap(uwo + ¥ wiX)
T+ exp(uo + 5 w; X;)
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(w) = InHP(yj|xj w)
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P(Y = 1|X,W) =

Good news: /(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize




Maximize Conditional Log Likelihood:
Gradient ascent

I(w) = Zyj(wO + Z":wlzg) —In(1 + exp(wg + iwzz{))
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Gradient Ascent for LR
" J

Gradient ascent algorithm: iterate until change < ¢

WD 4 ;L/Yz[ya —P(YT =1, W]
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Fori=1,..., K,
wi(t—i-l) _ wi(t) + 0> 2l - P(Yi=1| <, Wi
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repeat

Regularization in linear regression
"

m Overfitting usually leads to very large parameter choices, e.g.:

-2.2+3.1X-0.30 X2 -1.1 +4,700,910.7 X — 8,585,638.4 X2 + ...

= Regularized least-squares (a.k.a. ridge regression), for A>0:
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Large parameters — Overfitting
" i

1 1 1
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m If data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
= JEE

= Add regularlzatlon penalty, e.g., Lz

t(w) = lnHP Yl W)—*IIWHQ

Jj=1

m Practical note about wy:
| - ()
E/ ( L\— ;29 / i< 0

m Gradient of regularized likelihood:

Standard v. Regularized Updates
"
[ Maximum conditional likelihgod estimate
w* = arg max In H Py |x), w
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m Regularized maximum condltlonal likelihood estlmate
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Please Stop!! Stopping criterion
" —
lnHP Tlx?, w)) = Al|wlf3

= When do we stop domg gradient descent?

= Because /(W) is strongly concave:
i.e., because of some technical condition

* 1 2
Uw") = tw) < o1 lIVEw)ll2

= Thus, stop when: & 7 A “‘—F 'S




Convergence rates for gradient

descent/ascent
"
m Number of Iterations to get to accuracy
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Digression: Logistic regression for
more than 2 classes
o

m Logistic regression in more general case (C classes), where
Yin{0,...,C-1}

Digression: Logistic regression more
generally
=

m Logistic regression in more general case, where

Y in{0,...,C-1}
for c>0 &
PY = el w) = exp(weo + ;g Weiki)

C— -
1+ 3071 exp(weo + Yy wei;)

for c=0 (normalization, so no weights for this class)
1

P(Y = Oix,w) = : “
1+ ZS:} exp(wero + ZLI Weri ;)

Learning procedure is basically the same
as what we derived!
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The Cost, The Cost!!! Think abyput

= A .
the cost... X (V-( XLl
"
m What'’s the cost of a gradient update st{e/ for LR?7??
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Learning Problems as Expectations
"

= Minimizing loss in training data:
Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

1 ,
to(w) = ;aw,xf)
= However, we should really minimize expected loss on all data:
£(w) = B [t(w. )] = [ p(0t(w. x)ax

= So, we are approximating the integral by the average on the training data
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Gradient ascent in Terms of Expectations
" JE

m “True” objective function:

Uw) = Ex [l(w,x)] = /p(x)((w7x)dx
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
"

m “True” gradient:

Vi(w) = Ex [V{(w,x)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!




Stochastic Gradient Ascent for

- Logistic Regression

m Logistic loss as a stochastic function:
Ex [((w,x)] = Ex [In P(y|x, w) — A[|w][3]
m Batch gradient ascent updates:

N
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m Stochastic gradient ascent updates:
Online setting:

W w® o {xel? + 2P0 - Py = 1x0, w®)]}

Stochastic Gradient Ascent:

general case
"
= Given a stochastic function of parameters:
Want to find maximum

= Start from w©

= Repeat until convergence:
Get a sample data point x*
Update parameters:

= Works on the online learning setting!
= Complexity of each gradient step is constant in number of examples!
= In general, step size changes with iterations

What you should know...
"

m Classification: predict discrete classes rather than
real values

m Logistic regression model: Linear model

Logistic function maps real values to [0,1]

m Optimize conditional likelihood

m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent




