































Maximize Conditional Log Likelihood:

Gradient ascent

$$l(\mathbf{w}) = \sum_{j} y^{j}(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}))$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$

$$= \sum_{j} y^{j} \times \sum_{i} \left( y^{j} - \frac{1}{1 + exp(w_{0})} \right)$$



Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:  $-2.2 + 3.1 \times -0.30 \times 2$   $-1.1 + 4,700,910.7 \times -8,585,638.4 \times 2 + ...$ Regularized least-squares (a.k.a. ridge regression), for  $\lambda > 0$ :  $\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left( t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^{k} w_i^2$ 



# Large parameters $\rightarrow$ Overfitting $\frac{1}{1+e^{-x}} \qquad \frac{1}{1+e^{-100x}}$ • If data is linearly separable, weights go to infinity

 $\ell(\mathbf{w}) = \ln \prod_{j=1}^{n} P(y^j | \mathbf{x}^j, \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||_2^2$ 

j=1Practical note about w₀:

Regularized Conditional Log Likelihood

■ Gradient of regularized likelihood:

■ Add regularization penalty, e.g., L<sub>2</sub>:

- $\hfill\Box$  In general, leads to overfitting:
- Penalizing high weights can prevent overfitting...

OSham Kakade 2016

# Standard v. Regularized Updates

### Maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ \ln\prod_{j=1} P(y^j | \mathbf{x}^j, \mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

# Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \quad \ln \prod_{j=1}^{N} P(y^j | \mathbf{x}^j, \mathbf{w}) - \frac{\lambda}{2} \sum_{i=1}^{k} w_i^2$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

©Sham Kakade 2016

# Please Stop!! Stopping criterion

# $\ell(\mathbf{w}) = \ln \prod P(y^j | \mathbf{x}^j, \mathbf{w})) - \lambda ||\mathbf{w}||_2^2$

- When do we stop doing gradient descent?
- Because *I*(**w**) is strongly concave:

 $\hfill\Box$  i.e., because of some technical condition

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

■ Thus, stop when: gradient is Small

©Sham Kakade 2016

# Convergence rates for gradient descent/ascent Number of Iterations to get to accuracy $\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \leq \epsilon$ If func Lipschitz: $O(1/\epsilon^2)$ If gradient of func Lipschitz: $O(1/\epsilon)$ If func is strongly convex: $O(\ln(1/\epsilon))$







# The Cost, The Cost!!! Think about the cost...

■ What's the cost of a gradient update step for LR???

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_{j \le j} x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^0)] \right\}$$

Naively O(NAZ) for all-coordinates

Re-use & competation O(NA)

(ISham Kakada 201)

# Learning Problems as Expectations

- Minimizing loss in training data:
  - □ Given dataset:
    - Sampled iid from some distribution p(x) on features:
  - $\hfill \square$  Loss function, e.g., hinge loss, logistic loss,...
  - ☐ We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^{j})$$

■ However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[ \ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

• So, we are approximating the integral by the average on the training data

# Gradient ascent in Terms of Expectations

- $\begin{tabular}{l} \blacksquare \text{ "True" objective function:} \\ \ell(\mathbf{w}) = E_{\mathbf{x}} \left[ \ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x} \\ \end{tabular}$
- Taking the gradient:
- "True" gradient ascent rule:
- How do we estimate expected gradient?

Starm Kalanda 2018 31

## SGD: Stochastic Gradient Ascent (or Descent)



"True" gradient:

$$\nabla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[ \nabla \ell(\mathbf{w}, \mathbf{x}) \right]$$

- Sample based approximation:
- What if we estimate gradient with just one sample???
  - □ Unbiased estimate of gradient
  - □ Very noisy!
  - □ Called stochastic gradient ascent (or descent)
    - Among many other names
  - □ VERY useful in practice!!!

m Kakade 2016

# Stochastic Gradient Ascent for Logistic Regression



$$E_{\mathbf{x}} [\ell(\mathbf{w}, \mathbf{x})] = E_{\mathbf{x}} [\ln P(y|\mathbf{x}, \mathbf{w}) - \lambda ||\mathbf{w}||_2^2]$$

Batch gradient ascent updates:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^N x_i^{(j)}[y^{(j)} - P(Y = 1 | \mathbf{x}^{(j)}, \mathbf{w}^{(t)})] \right\}$$

Stochastic gradient ascent updates:

Online setting:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

skrada 2016

# Stochastic Gradient Ascent: general case



- Given a stochastic function of parameters:
  - □ Want to find maximum
- Start from w(0)
- Repeat until convergence:
  - ☐ Get a sample data point x<sup>t</sup>
  - Update parameters:
- Works on the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations

CCham Kalanda 2016

# What you should know...



- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model
   Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent

um Kahauta 2016

35