

Coordinate Descent for LASSO (aka Shooting Algorithm)

Repeat until convergence

Pick a coordinate / at (random or sequentially)

Set:
$$\hat{w}_{\ell} = \begin{cases} (c_{\ell} + \lambda)/a_{\ell} & c_{\ell} < -\lambda \\ 0 & c_{\ell} \in [-\lambda, \lambda] \\ (c_{\ell} - \lambda)/a_{\ell} & c_{\ell} > \lambda \end{cases}$$

Where:
$$a_{\ell} = 2 \sum_{j=1}^{N} h_{\ell}(x_{j})^{2}$$

$$c_{\ell} = 2 \sum_{j=1}^{N} h_{\ell}(x_{j}) \left(t(x_{j}) - (w_{0} + \sum_{i \neq \ell} w_{i}h_{i}(x_{j})) \right)$$

For convergence rates, see Shalev-Shwartz and Tewari 2009

Other common technique = LARS

Least angle regression and shrinkage, Efron et al. 2004

What you need to know Variable Selection: find a sparse solution to learning problem L₁ regularization is one way to do variable selection Applies beyond regression Hundreds of other approaches out there LASSO objective non-differentiable, but convex → Use subgradient No closed-form solution for minimization → Use coordinate descent Shooting algorithm is simple approach for solving LASSO

Maximize Conditional Log Likelihood: Gradient ascent

$$l(\mathbf{w}) = \sum_{j} y^{j} (w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

__ ...

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^0)]$$

For i=1,...,k,
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^0)]$$

repeat

@Sham Kakade 2016

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:
-2.2 + 3.1 X - 0.30 X²
-1.1 + 4,700,910.7 X - 8,585,638.4 X² + ...

910.7 X – 8,585,638.4

■ Regularized least-squares (a.k.a. ridge regression), for λ >0:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^{k} w_i^2$$

@Cham Kalanda 2010

Large parameters \rightarrow Overfitting $\frac{1}{1+e^{-x}} \qquad \frac{1}{1+e^{-100x}}$ • If data is linearly separable, weights go to infinity

Regularized Conditional Log Likelihood

- $\begin{array}{l} \bullet \ \ \text{Add regularization penalty, e.g., L}_2: \\ \ell(\mathbf{w}) = \ln \prod_{i=1}^N P(y^j|\mathbf{x}^j,\mathbf{w}) \frac{\lambda}{2} ||\mathbf{w}||_2^2 \end{array}$
- Practical note about w₀:
- Gradient of regularized likelihood:

(Chan Kalada 2016

$\hfill\Box$ In general, leads to overfitting:

Penalizing high weights can prevent overfitting...

©Sham Kakade 2016

Standard v. Regularized Updates

Maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ \ln\prod_{j=1} P(y^j | \mathbf{x}^j, \mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ \ln\prod_{j=1}^N P(y^j|\mathbf{x}^j, \mathbf{w}) - \frac{\lambda}{2} \sum_{i=1}^k w_i^2$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^0)] \right\}$$

©Sham Kakade 2016

Please Stop!! Stopping criterion

- When do we stop doing gradient descent?
- Because *I*(**w**) is strongly concave:
 - $\hfill\Box$ i.e., because of some technical condition

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

■ Thus, stop when:

©Sham Kakade 2016

Digression: Logistic regression for more than 2 classes

 Logistic regression in more general case (C classes), where Y in {0,...,C-1}

Digression: Logistic regression more generally

 Logistic regression in more general case, where Y in {0,...,C-1}

for
$$c>0$$

$$P(Y = c|\mathbf{x}, \mathbf{w}) = \frac{\exp(w_{c0} + \sum_{i=1}^{k} w_{ci} x_i)}{1 + \sum_{c'=1}^{c'-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i} x_i)}$$

for c=0 (normalization, so no weights for this class)

$$P(Y = 0 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + \sum_{c'=1}^{C-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i} x_i)}$$

Learning procedure is basically the same as what we derived!

The Cost, The Cost!!! Think about the cost...

What's the cost of a gradient update step for LR???

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^0)] \right\}$$

©Sham Kakade 2016

Learning Problems as Expectations

Minimizing loss in training data:

- □ Given dataset:
 - Sampled iid from some distribution p(x) on features:
- □ Loss function, e.g., hinge loss, logistic loss,...□ We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^{j})$$

■ However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

• So, we are approximating the integral by the average on the training data

Gradient ascent in Terms of Expectations

- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \begin{tabular}{l} \blacksquare \begin{tabular}{l} \begin{tabular}{l} \blacksquare \begin{tabular}{l} \begin{tabular}{l} \begin{tabular}{l} \blacksquare \begin{tabular}{l} \b$
- Taking the gradient:
- "True" gradient ascent rule:
- How do we estimate expected gradient?

SGD: Stochastic Gradient Ascent (or Descent)

"True" gradient:

$$\nabla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[\nabla \ell(\mathbf{w}, \mathbf{x}) \right]$$

- Sample based approximation:
- What if we estimate gradient with just one sample???
 - □ Unbiased estimate of gradient
 - Very noisy!
 - □ Called stochastic gradient ascent (or descent)
 - Among many other names
 - □ VERY useful in practice!!!

Stochastic Gradient Ascent for Logistic Regression

$$E_{\mathbf{x}}\left[\ell(\mathbf{w}, \mathbf{x})\right] = E_{\mathbf{x}}\left[\ln P(y|\mathbf{x}, \mathbf{w}) - \lambda ||\mathbf{w}||_{2}^{2}\right]$$

Batch gradient ascent updates:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^N x_i^{(j)} [y^{(j)} - P(Y = 1 | \mathbf{x}^{(j)}, \mathbf{w}^{(t)})] \right\}$$

Stochastic gradient ascent updates:

$$\begin{array}{c} \square \text{ Online setting:} \\ w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)}[y^{(t)} - P(Y=1|\mathbf{x}^{(t)},\mathbf{w}^{(t)})] \right\} \end{array}$$

Stochastic Gradient Ascent: general case

- Given a stochastic function of parameters:
 - □ Want to find maximum
- Start from w(0)
- Repeat until convergence:
 - ☐ Get a sample data point x^t
 - Update parameters:
- Works on the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations

©Sham Kakade 2016

What you should know...

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model

 □ Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent

CCham Kalanda 2010

Stopping criterion

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^j | \mathbf{x}^j, \mathbf{w}) - \lambda ||\mathbf{w}||_2^2$$

- Regularized logistic regression is strongly concave
 - □ Negative second derivative bounded away from zero:
- Strong concavity (convexity) is super helpful!!
- For example, for strongly concave *I*(**w**):

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \leq \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

@Shoon Kalanda 2016

Convergence rates for gradient descent/ascent

Number of Iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- If func Lipschitz: O(1/ϵ²)
- If gradient of func Lipschitz: O(1/ε)
- If func is strongly convex: O(ln(1/ε))

©Sham Kakade 2016