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Announcements:
= S
m HW1 due on Friday.

= Today:
Review: sub-gradients,lasso
Logistic Regression
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Variable Selection by Regularization
= lelf?{‘uf

m Ridge regression: Penalizes large weights

m What if we want to perform “feature selection”?
E.g., Which regions of the brain are important for word prediction?
Can't simply choose features with largest coefficients in ridge solution

m Try new (convex) penalty: Penalize non-zero weights
Regularization penalty: (
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Leads to sparse solutions
Just like ridge regression, solution is indexed by a continuous param A
Major impact in: statistics, machine learning & electrical engineering




LASSO Regression (Related) Constrained Optimization
" J "
m LASSO: least absolute shrinkage and selection operator = LASSO solution:
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Optimizing the LASSO Objective Coordinate Descent
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Optlmlzmg LASSO Obijective
inate-at a Time

Subgradients of Convex Functions
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= Taking the derivative:
Residual sum of squares (RSS): /
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s —RSS(w :722}1( x;) ( xj wo+2w1h xj >

Penalty term:

‘- (Tradients are unique at'wi iff function differentiable at w
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() = Subgradients: Generalize gradients to non-differentiable points:
v 7 Any/plane that lower bounds function: 5 V L J = Jen
/

P2 b, h_ow TF

e’ > [{u\vL Db(‘v) w oS

) . . 2 . . Tl =
Taking the Subgradient (-3 une) 13 Setting Subgradientto 0 " |0
" A N " A

m Gradient of RSS term: ar =23 (hi(x;))? apwy —cp— A wp < 0
9 - O, F(w) [—co—A—co+ A w=0
TWRSS(W) = Qpwy — Cy =2 (w + Z'u'lhl(x,))

e
Ifnopenalty:b\)[:(//ﬁr/( j =0

m Subgradient of full objective:

9% Ta,0,- 4 >\ 0 /Wzlﬂu&

Q2
Lhen v, &0

Agwp —C g =N
{[,51/> IEEIERN Chem =

Ollg —Cp =+ Lhen s o




(ce+N)/ar  co <=\
Wy = 0 (NS [—)\7 )\]
(e —=N/ae o> A

/ From
cz Kevin Murphy
/ : textbook

Coordinate Descent for LASSO
(aka Shooting Algorithm)
= e

m Repeat until convergence
Pick a coordinate / at (random or sequentially)

= Set: (C[ + )\)/llg cr < —A
Wy = 0 ¢ € [\
(C[*)\)/a( ce >\
= Where: N
ar =23 (he(x;))?

N
= 22/11(;(,) (:(x,) — (wo + Z u\h‘(x,)])
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For convergence rates, see Shalev-Shwartz and Tewari 2009
m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004

Recall: Ridge Coefficient Path
"

o
v le 2R
—e—\bgvh
d 0.4} —€—svi
icp From
p»‘ : 031 —e— pggas Kevin Murphy
A 4 S7é 02 textbook
o1 2222233
o
“o
I
o B 10 15 2 2 E)
\
0 Saye A N

m Typical approach: select A using cross validation

Now: LASSO Coefficient Path
" J
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What you need to know
"

Variable Selection: find a sparse solution to learning
problem
L1 regularization is one way to do variable selection
Applies beyond regression
Hundreds of other approaches out there
LASSO objective non-differentiable, but convex =
Use subgradient
No closed-form solution for minimization & Use
coordinate descent

Shooting algorithm is simple approach for solving
LASSO

Sample size issues?
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THUS FAR, REGRESSION:
PREDICT A CONTINUOUS
VALUE GIVEN SOME INPUTS




Weather prediction revisted

Temperature

GFf

Reading Your Brain, Simple Example
'_.P_ [Mitchell et al

airwise classification accuracy: 85%

Person s Animal
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Classification

m Learn: h X Y
0 X — features
0'Y —target classes

you classify? 2 O
1 Bayes optimal classifier:;

BT (=g 1)

= How do we esti%/ate P(Y|X)?

Link Functions

m Estimating P(Y|X): Why not use standard linear
regression?

\[",:, WOJ' ZW’CX{‘

m Combing regression and probability?
1 Need a mapping from real values to [0,1]
1 A link function!




o C fameton L - : -
Logistic Regression  (ersigmoia;: 1+ (- Understanding the sigmoid

" . - —
Learn P(Y|X) directly {, (Mo A
Assume a particular functional form for link ol / - 1
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Features can be discrete or continuous! - > -
LOgIStIC Regrggsmn - L Very convenient!
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Optimizing concave function —
Gradient ascent
"

= Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

ol(w) Bl(w)],

Gradient: Vwl(w) = [3—71)0’ O oon

Update rule: Aw = 3V wl(w)

(t+1) W , ol(w)
1 1 n awl
= Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent can be much better

Loss function: Conditional Likelihoo
(Y‘?ﬂdj’ o (lxubfj”/d)
m Have a bu of iid data of the form:
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= Discriminative (logistic regression) loss function:
Conditional Data Likelihood W
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Expressing Conditional Log Likelihood
I(w) = Z In P(y|x7, w)
J

P(Y =0[X,w) =

exp(wo + YiwiX;)

PO = K)o + 3 w0

Uw) = Zyj InP(Y = 1x%,w) + (1 =) In P(Y = 0|x/, w)
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Maximizing Conditional Log Likelihood

- s

(w) = In[[ PG X, w)
J

1+ exp(wo + £ wiX;)
eap(wo + ¥ wiXi)

PO = 1 W) = (oo + 5 wiXD)

= Y ¥/ (wo+ Y wizl) — In(1 + exp(wo + Y wizl))
7 i i

Good news: /(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize




Maximize Conditional Log Likelihood:
Gradient ascent

. n R n B
w) = >y (wo+ Y wiw]) = In(1 + exp(wo + Y wiz)))
J i i

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ¢

wfT w40 Yl - PO =1, W)
J

Fori=1,..., K,

wit o ® +nZ$f[yj ~P(Y7 =1 x/,w)]
J

repeat

Regularization in linear regression
"

m Overfitting usually leads to very large parameter choices, e.g.:

-2.2+3.1X-0.30 X2

-1.1 +4,700,910.7 X — 8,585,638.4 X2 + ...

= Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
wt = ;|r;.’,1l‘linz<l(x,) Zw,lr,(x_,)) Q/\Zu';"
i i i=1

Linear Separability
"
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Large parameters — Overfitting
" i

1 1 1
14e7® 14 e—2 14 e—100z

m If data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...

37
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Regularized Conditional Log Likelihood
= JEE

= Add regularlzatlon penalty, e.g., Lz

t(w) = lnHP Yl W)—*IIWHE

Jj=1

m Practical note about wy:

m Gradient of regularized likelihood:

Standard v. Regularized Updates
"
[ Maximum conditional likelihgod estimate
w* = arg max In H Py |x), w

j=1

wi T ) nzx{[yj - P(Y7 =1|x, W]
J

m Regularized maximum condltlonal likelihood estlmate

= J _ = 2
w* = argmax lnl_[le |x7, w Zw
j=

ng_l) — wgt)-i-'r] {)\wqgt) + Z x{ [y’
J

—P(Yi = 1xf,v35]}

Please Stop!! Stopping criterion
" —
lnHP Tlx?, w)) = Al|wlf3

= When do we stop domg gradient descent?

= Because /(W) is strongly concave:
i.e., because of some technical condition

* 1 2
Uw") = tw) < o1 lIVEw)ll2

= Thus, stop when:
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Digression: Logistic regression for
more than 2 classes
o

m Logistic regression in more general case (C classes), where
Y in{0,...,C-1}

Digression: Logistic regression more
generally
=

m Logistic regression in more general case, where

Yin{0,...,C-1}
for ¢>0 k
P(Y =¢|x,w) = eXp(Weo + 3 iy Weili)

14+ 252 exp(weo + S5, weri:)

for c=0 (normalization, so no weights for this class)
1

P(Y =0x,w) = —
1+ 30T exp(weo + S5 weri)

Learning procedure is basically the same
as what we derived!
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The Cost, The Cost!!! Think about

the cost...
"
m What's the cost of a gradient update step for LR???

WD 0y {_Mi(t) + ng[yj —P(YI=1] XJ,V%]}
J
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Learning Problems as Expectations
"

= Minimizing loss in training data:
Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

1 & :
(o(w) = 5 > Uw,x')
j=1

m However, we should really minimize expected loss on all data:
bw) = B (1w, )] = [ p0t(w. x)dx

= So, we are approximating the integral by the average on the training data

2016 45

Gradient ascent in Terms of Expectations
= JEE
m “True” objective function:

Uw) = Ex [l(w,x)] = /p(x)é(w,x)dx

m Taking the gradient:
m “True” gradient ascent rule:

m How do we estimate expected gradient?

SGD: Stochastic Gradient Ascent (or Descent)

"
m “True” gradient:

Vi(w) = Ex [V{(w,x)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!

a7

Stochastic Gradient Ascent for

i} Logistic Regression

m Logistic loss as a stochastic function:
Ex [((w,x)] = Ex [In P(y|x, w) — A||wl[3]
m Batch gradient ascent updates:
w w4 {—Awf” + %ﬁ;a-f”w - P = 1\x<7>.w“>>1}

m Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wlm + {7)\1021") + xét) [y® — PY = l\x(t),w(t))]}
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Stochastic Gradient Ascent:

general case
"
= Given a stochastic function of parameters:
Want to find maximum

= Start from w©

= Repeat until convergence:
Get a sample data point x*
Update parameters:

m Works on the online learning setting!
= Complexity of each gradient step is constant in number of examples!
= In general, step size changes with iterations

What you should know...
"

m Classification: predict discrete classes rather than
real values

m Logistic regression model: Linear model

Logistic function maps real values to [0,1]

m Optimize conditional likelihood

m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent

Stopping criterion
" —
(w) = [T P71 w)) = Allwl

= Regularized logistic regression is strongly concave
Negative second derivative bounded away from zero:

= Strong concavity (convexity) is super helpful!!

= For example, for strongly concave /(w):

tw) — t(w) < o5 V6w 3

51

Convergence rates for gradient
descent/ascent
"
m Number of Iterations to get to accuracy
w*) —Lb(w) < e
m [f func Lipschitz: O(1/e2)
m [f gradient of func Lipschitz: O(1/€)

m [f func is strongly convex: O(In(1/€))
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