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Announcements: 4 ‘Y
"
m TA office hours posted on website | ¢ Qje
m Recitation this week: Python
= HW1posted &
m Addcodes: decided by tomorrow. You will be
contacted by email.

m Today:
MLE continued
Regression

What about continuous variables?
"
m Billionaire says: If | am measuring a continuous
variable, what can you do for me?
m You say: Let me tell you about Gaussians...
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Some properties of Gaussians
"
m affine transformation (multiplying by scalar and
adding a constant)
X~ N(p,0?)
Y=aX+b & Y ~N@aptb,a2s?)

m Sum of Gaussians
X ~ N(ux,02x)
Y ~ N(py,02y)
Z=X+Y > Z~ N(ux+uy, 62%+c2y)




Learning a Gaussian

=
m Collect a bunch of data AT S/

Hopefully, i.i.d. samples 15
e.g., exam scores ‘
X, Y- L
m Learn parameters 7
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Your second learning algorithm:
MLE for mean of a Gaussian
N

m What's MLE for mean? =
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MLE for variance
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m Again, set derivative to zero:
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Learning Gaussian parameters
"

= MLE: R 1 X
BMLE = <%
N/ =
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m BTW. MLE for the variance of a Gaussian is biased

Expected result of estimation is not true parameter!
Unbiased variance estimator:

Prediction of continuous variables
" J

m Billionaire says: Wait, that’s not what | meant!

m You say: Chill out, dude.

m She says: | want to predict a continuous variable
for continuous inputs: | want to predict salaries
from GPA.

m You say: | can regress that...
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n Learn Mapping from x to t(x)

pothesns space:
unctions
/d coeffs W={Wy,..., Wi} t(x) =~ flx) =

H={£llA..‘,hK} {<?<
S wihi(x)
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/ Why is this called linear regression???
= model is linear in the parameters
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m Precisely, minimize the residual sq7uaLed error:
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Minimizing the Residual // (core ot

"
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Regression solution = simple matrix operations

"
w* = argmin(Hw — t)7 (Hw — t)
w

residual error

solution: w* = (HTH)_1 H't =
b

A-1
where A = H"H :EE !! b=H"t :[E]
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kxk matrix kx1 vector

for k basis functions

But, why?
"
Billionaire again, she says: Why sum squared error???
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m Model: prediction |s/ﬁ1e€r function plus Gaussian noise
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You say: Gaussians, Gaussmns
PSS g L -

o € /a«

mLearnw us‘{MLE

P(t|x,w,0) =

- [t—zi wihi(x)] 2

e 202
oV 2w

. [0 A 6w o) -
Maximizing |097|kellhood P o)
" A
Maximize:

N 7[! Z[u v x!]
InP(D|W,U)=In (ﬁ) 'ﬁle =l
j=
V{4
p— //M( ) - H ()~ %0, 1)
% v//zgfj
= A7 Min % /%(\93* fuﬂag;(xj)) L
Lo < \

|Least-squares Linear Regression is MLE for Gaussians!!! |




Bias-Variance Tradeoff
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Bias-Variance tradeoff — Intuition
"
= Model too “simple” 2 does not fit the data well
A biased solution 4

m Model too complex => small changes to the
data, solution changes a lot

-variance solution

(Squared) Bias of learner
" =
m Given dataset D with N samples,

learn functionhp(x)

m If you sample a different dataset D’ with N samples,

[errn b

D

you will learn different hp’(x) — Ll (><) / ><
m Expected hypothesis: ED[hD(X)hX l; D

4
m Bias: difference between what you expect to learn and truth
Measures how well you expect to represent true solutlon
Decreases with more complex momek\, ({ (\) - A &) )

Bias? at one point x: ——— 64/ \
Average Bias: T« BT ha () 1

Variance of learner
"
m Given dataset D with N samples,
learn function hp(x)
m If you sample a different dataset D’ with N samples,
you will learn different hp’(x)
m Variance: difference between what you expect to learn and
what you learn from a particular dataset

Measures how sensitive learner is to specmc dataset
Decreases with simpler model _—
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Bias-Variance Tradeoff
"
m Choice of hypothesis class introduces learning bias

More complex class — less bias
More complex class — more variance

onthe graph orpress_Example
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Bias-Variance Decomposition of Error
hn(z) = Eplhp(z)]
"
m Expected mean squared error: MSE = Ep [Ez [(t(r) - hD(T))ZH
m To simplify derivation, drop x:

m Expanding the square:

Moral of the Story:
Bias-Variance Tradeoff Key in ML
= —

m Error can be decomposed:
MSE = Ep [Ez {(t(z) - hD(x))ZH

-5 [(t(gy) - BN(x))Z] +Ep [E [(ﬁ(x) - h,_y(a:))2H

m Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class — more variance

What you need to know
"
m Regression
Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians
m Bias-variance trade-off

m Play with Applet
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Bias-Variance Tradeoff
"
m Choice of hypothesis class introduces learning bias

More complex class — less bias
More complex class — more variance

Training set error . - s (1 yone)
"
m Given a dataset (Training data)
m Choose a loss function
e.g., squared error (L) for regression
m Training set error: For a particular set of
parameters, loss function on training data:
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Prediction error
"
m Training set error can be poor measure of
“quality” of solution

m Prediction error: We really care about error

over all possible input points, not just training
data:

erroryue(w) = Ex |:<f(x) —Zw,h,-(x)) :|

2
- /(f(x)—ZIUilh(X)) p(x)dx
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Prediction error as a function of
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Computing prediction error
"
m Computing prediction
Hard integral
May not know t(x) for every x

2

errory (W) = /([(x)—Zw,hl(x)) p(x)dx

m Monte Carlo integration (sampling approximation)
Sample a set of i.i.d. points {X,...,Xu} from p(x)
Approximate integral with sample average

M
ErToTirue(W) = ‘L[ Z (f(x_i) - Z 11,',h,»(x,)>
=1 i
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Why training set error doesn’t
i} aEEroximate prediction error?

m Sampling approximation of prediction error:

.M
CrToTiue(W) = \i[ Z (f(x‘,) - Z u‘,h,‘(x,/-)>
M= i

m Training error :

2

1

Nirain 2
ErToTrain(W) = T Z (f(x_,)—Zunlu(xﬂ)
Ntrain %
=1

i

m Very similar equations!!!
Why is training set a bad measure of prediction error???




Why training set error doesn’t

. aggroximate Prediction error?

L Because you cheated!!!

Training error good estimate for a single w,
But you optimized w with respect to the training error,
and found w that is good for this set of samples

Training error is a (optimistically) biased
estimate of prediction error

m Very similar equations!!!
Why is training set a bad measure of prediction error???

Test set error
"
m Given a dataset, randomly split it into two parts:
Training data — {X1,..., Xnrain}
Test data — {x1,..., Xntest}

w' o= zu‘gu&nz (((x,) - Zuyh,qxv,))
i i

m Use training data to optimize parameters w

m Test set error: For the final output \II\V, evaluate
the error using:
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Overfitting
"
m Overfitting: a learning algorithm overfits the

training data if it outputs a solution w when there
exists another solution w’ such that:

lerrorirain(W) < erroriyain(W)Alerrortrue(w') < errorirue(w)l




How many points to | use for

. training/testing?

m Very hard question to answer!

Too few training points, learned w is bad

Too few test points, you never know if you reached a good solution
m Bounds, such as Hoeffding’s inequality can help:

P(|§—0"|>¢) < 22N

m More on this later this quarter, but still hard to answer
m Typically:

for a “reasonable” estimate of error, and use the rest for learning

If you have little data, then you need to pull out the big guns...
= e.g., bootstrapping

37

If you have a reasonable amount of data, pick test set “large enough”

Error estimators
=

POF e (W) /(nxl—zmhqu\) plx)dx

Error as a function of number of training
examples for a fixed model complexity

little data infinite data
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Error estimators
" o

Be careful!!!

Test set only unbiased if you never never ever ever
do any any any any learning on the test data

For example, if you use the test set to select
the degree of the polynomial... no longer unbiased!!!
(We will address this problem later in the quarter)

1

Newst 2
errorea(w) = ‘\'N'X(l:xc\ Z.,»‘l,_:x,;)
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What you need to know
" J
m True error, training error, test error
Never learn on the test data
Never learn on the test data
Never learn on the test data
Never learn on the test data
Never learn on the test data

m Overfitting

11
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What about prior
"
m Billionaire says: Wait, | know that the thumbtack is
“close” to 50-50. What can you do for me now?

m You say: | can learn it the Bayesian way...

m Rather than estimating a single 6, we obtain a
distribution over possible values of 6

Bayesian Learning

ol
m Use Bayes rule:
roi D) = FEIOPO)

m Or equivalently:
P(O|D) x P(D|6)P(H)

a7

Bayesian Learning for Thumbtack
"
P(0|D) o« P(D|6)P(6)

m Likelihood function is simply Binomial:
P(D | 0) = 0“H(1 — §)°T

m What about prior?
Represent expert knowledge
Simple posterior form
m Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution

12



Beta prior distribution — P(6)

— — Mean:
0Pr—1(1 — g)Pr—1
P(0) = —— > ~ Beta(Bu, B7)  moge:
de:
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m Likelihood function: P(D|0) = 6“1 (1 — 0)°T
m Posterior: P(9| D) « P(D|60)P(0)

Posterior distribution

m Prior: Beta(By, Br)
m Data: ay heads and o tails

m Posterior distribution:

P(0 | D) ~ Beta(By + o, Br + o)

B
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Bota(3020)

Using Bayesian posterior 5}
" ]

m Posterior distribution: 3

P(0 | D) ~ Beta(Sg + ay, Br + aT)

m Bayesian inference:
No longer single parameter:

1
BIfO)] = [ f(6)P(6| D)do

Integral is often hard to compute

MAP: Maximum a posteriori ;—7**
approximation ol
o

P(0 | D) ~ Beta(By + ap, br + o) &

1
BIfO)] = | F(O)P©| D)ds

m As more data is observed, Beta is more certain

m MAP: use most likely parameter:

0 = arg meaxP(e D) ELf(0)] = f(0)
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MAP for Beta distribution ]

@ 5405 05
paramete e

oButan—1(1 — g)brtar-1

PO = 56y T am Br +an)

~ Beta(By+ay, Br+ar)

m MAP: use most likely parameter:

6 = arg mgaxP(O | D) =

m Beta prior equivalent to extra thumbtack flips
m As N — 1, prior is “forgotten”
m But, for small sample size, prior is important!
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