What about continuous variables? - Billionaire says: If I am measuring a continuous variable, what can you do for me? - You say: Let me tell you about Gaussians... $$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$ ### Some properties of Gaussians - affine transformation (multiplying by scalar and adding a constant) - $\square X \sim N(\mu, \sigma^2)$ - \square Y = aX + b \rightarrow Y ~ $N(a\mu+b,a^2\sigma^2)$ - Sum of Gaussians - $\ \ \square \ X \sim \textit{N}(\mu_X, \sigma^2_X)$ - \square Y ~ $N(\mu_Y, \sigma^2_Y)$ - \Box Z = X+Y \rightarrow Z ~ $N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$ ©2016 Sham Kakade Learning a Gaussian Collect a bunch of data Hopefully, i.i.d. samples e.g., exam scores Learn parameters Mean Variance $$P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$ ### Learning Gaussian parameters MLE: $$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$ $$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$ - BTW. MLE for the variance of a Gaussian is biased - ☐ Expected result of estimation is **not** true parameter! - □ Unbiased variance estimator: $$\hat{\sigma}_{unbiased}^2$$ $$\hat{\sigma}_{unbiased}^2$$ $\frac{1}{N-1}\sum_{i=1}^N (x_i - \hat{\mu})^2$ ### Prediction of continuous variables - Billionaire says: Wait, that's not what I meant! - You say: Chill out, dude. - She says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA. - You say: I can regress that... ## The regression problem Instances: <x_j, t_j≯ ■ Learn: Mapping from x to t(x) $\begin{array}{c} \textbf{Hypothesis space:} \\ \hline \quad \textbf{Given, basis functions} \\ \hline \quad \textbf{Find coeffs w=\{w_1,\ldots,w_k\}} \end{array} \begin{array}{c} H=\{h_1,\ldots,h_K\} \\ \hline \quad t(\mathbf{x})\approx f(\mathbf{x})=\sum_i w_i h_i(\mathbf{x}) \end{array}$ Why is this called linear regression??? • model is linear in the parameters ■ Precisely, minimize the residual squared error: Minimizing the Residual $$\mathbf{w}^* = \arg\min_{\mathbf{w}} (\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})$$ $\mathbf{w}^* = \arg\min_{\mathbf{w}} (\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})$ $\mathbf{w}^* = \arg\min_{\mathbf{w}} (\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})$ $\mathbf{w}^* = -2\alpha(x + y - t)$ $\mathbf{w}^$ # Bias-Variance Tradeoff ■ Choice of hypothesis class introduces learning bias More complex class → less bias More complex class → more variance | Output by cluting in the grant or press | Degree of polynomial | Output o ### Prediction error - Training set error can be poor measure of "quality" of solution - Prediction error: We really care about error over all possible input points, not just training data: $$error_{true}(\mathbf{w}) = E_{\mathbf{x}} \left[\left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} \right]$$ $$= \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} p(\mathbf{x}) d\mathbf{x}$$ ### Computing prediction error ### Computing prediction - Hard integral - ☐ May not know t(x) for every x $$error_{true}(\mathbf{w}) = \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} p(\mathbf{x}) d\mathbf{x}$$ - Monte Carlo integration (sampling approximation) - $\hfill \square$ Sample a set of i.i.d. points $\{\pmb{x}_1, ..., \pmb{x}_M\}$ from $p(\pmb{x})$ - $\hfill \square$ Approximate integral with sample average $$error_{true}(\mathbf{w}) \approx \frac{1}{M} \sum_{j=1}^{M} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ # Why training set error doesn't approximate prediction error? Sampling approximation of prediction error: $$error_{true}(\mathbf{w}) \approx \frac{1}{M} \sum_{j=1}^{M} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ Training error : $$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$ - Very similar equations!!! - □ Why is training set a bad measure of prediction error??? 32 ### How many points to I use for training/testing? - Very hard question to answer! - $\hfill\Box$ Too few training points, learned \boldsymbol{w} is bad - ☐ Too few test points, you never know if you reached a good solution - Bounds, such as Hoeffding's inequality can help: $$P(||\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$ - More on this later this quarter, but still hard to answer - Typically: - If you have a reasonable amount of data, pick test set "large enough" for a "reasonable" estimate of error, and use the rest for learning - □ If you have little data, then you need to pull out the big guns... - e.g., bootstrapping 116 Stram Kakade | What you need to know | |--| | True error, training error, test error Never learn on the test data | | Overfitting | | 65016 Sham Késate 41 | ### **Bayesian Learning** ■ Use Bayes rule: $$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$ Or equivalently: $$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$ ### Bayesian Learning for Thumbtack $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$ ■ Likelihood function is simply Binomial: $$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$ - What about prior? - □ Represent expert knowledge - □ Simple posterior form - Conjugate priors: - □ Closed-form representation of posterior - □ For Binomial, conjugate prior is Beta distribution # Beta prior distribution — $P(\theta)$ $P(\theta) = \frac{\theta^{\beta_H - 1}(1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T) \qquad \text{Mode:}$ **Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H}(1 - \theta)^{\alpha_T}$ **Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$ ## MAP for Beta distribution $$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$ ■ MAP: use most likely parameter: $$\hat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) =$$ - Beta prior equivalent to extra thumbtack flips - As $N \rightarrow 1$, prior is "forgotten" - But, for small sample size, prior is important! ©2016 Sham Kakade