
CSE 546: Machine Learning Lecture 7

Feature construction: Boosting, Kernels, and Random Features...

Instructor: Sham Kakade

1 Boosted Decision Trees

The input is a training set:
{(x1, y1), . . . (xn, yn)}

1. Initialize: set the residual ri = yi for all i and initialize our model so that f(x) = 0 (where x is the input vector).

2. (“weak learning”) find some feature ψ∗(x), where this feature mapping takes x to a real number (e.g. a decision
tree) which improves our residual error. Here the residual error of a feature ψ is defined as:

L̂(ψ) =
1

n

∑
i

(ri − ψ(xi))2

3. update the model and the residual error

f(x) ← f(x) + ψ(x)

ri ← ri − ψ(xi)

and return to step 2 (or terminate based on some stopping criterion).

2 Kernel methods: The basic idea

The basic idea is to make new predictions based on a similarity measure to points in our dataset. Suppose we have a
training set:

{(x1, y1), . . . (xn, yn)}

Let K(x, x′) be a a similarity measure between two points x and x′.

Given a new point x, we seek to make a prediction of y in the following form:

y =

n∑
i=1

αiK(xi, x)

where xi are points in our training set and α = (α1 . . . αn) is our weight vector. Note that the dimension of our weight
vector is now n. Also, here, x need not be a vector (it could be some arbitrary object).
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3 Kernels

Let us instead make a feature vector out of a point x ∈ X (where X is our input space) through a function φ which
maps x to some high dimensional space, where φ : X ← Rd′ (often d may be much greater than the sample size n).

A kernel is an inner product mapping where:

K(x, x′) := φ(x)>φ(x′)

In other words, the kernel just specifies the inner product under some feature mapping φ.

Sometimes we specify the kernel without explicitly defining a function φ. In particular Mercer’s theorem, states
conditions under which a function K(x, x′) is a valid Kernel. In particular K(x, x′) is a valid kernel (i.e. there exists
a corresponding φ so that K(x, x′) := φ(x)>φ(x′)) if and only if K is positive semidefinite in the following sense:
for all points x1, . . . xl, the matrix D whose i, j-th coordinate in K(xi, xj) is a positive semidefinite matrix.

3.1 Examples

Suppose x and x′ are d-dimensional vectors. Let us consider the following Kernel:

K(x, x′) = (x>x′)2

Here, we have that:

K(x, x′) = (

d∑
j=1

xjx
′
j)

2 =
∑
j

x2j (x
′
j)

2 + 2
∑
j<k

xjxkx
′
jx
′
k

Hence, we see that the feature map is just:

φ(x) = (x21, x
2
2, . . . x

2
d,
√
2x1x2,

√
2x1x3, . . .

√
2x1xd,

√
2x2x3,

√
2x2x4, . . .)

This proves that K is indeed a kernel. Also, we see that K is a kernel corresponding to exactly a degree two polyno-
mial.

A similar argument show that:
K(x, x′) = (x>x′)k

is a kernel corresponding do exactly a degree k polynomial. Also, one can see that:

K(x, x′) = (x>x′ + c)k

(where c is a constant) is a kernel corresponding a polynomial containing terms of degree k or less.

A kernel which often works well in practice is the radial basis kernel, which is defined as follows:

K(x, x′) = exp(−‖x− x
′‖2

2σ2
)

One can explicitly prove that this is a valid kernel (though the dimension of the corresponding feature map φ is note
finite).

4 Kernel Regression

In the case of Kernel regression, let us suppose we want to fit the line:

w>φ(x)
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to our data. Here, φ is the feature mapping corresponding to the kernel K.

In particular, we could consider fitting the weights with ridge regression:

ŵ = argminw
1

n

∑
i

(yi − w>φ(xi))2 + λ‖w‖2

One can show that this best fit line is:
ŵ>φ(x) =

∑
i

α̂iK(xi, x)

where:
α̂ = D(D + λIn)

−1Y

where D is the n× n matrix in which:
Dj,k = K(xj , xk)

4.1 An Equivalent “dual” viewpoint

Equivalently, the following formulation will result in the same mapping. Note that (
∑
j αjK(xj , xi)) is our prediction

of the point yi. We can find an estimate of α as follows:

α̂ = argminα
1

n

∑
i

yi − (
∑
j

α̂jK(xj , xi))

2

+ λα>Dα

where α>Dα is our regularizer. This choice of a regularizer is natural (as it will give rise to the same solution had we
worked with φ).

If we solve for the above (and rearrange the expression for the solution), we obtain that:

α̂ = D(D + λIn)
−1Y

which is precisely what we obtained in the “primal” problem.

5 Random Features

For the radial basis function, a natural way to approximate this function is as follows. First sample vectors: v1, v2, . . . vl
where each vi ∈ Rd and sampled from a N(0, 1

σ2
Id). Then construct the feature vector:

φ(x) = (cos(v>1 x), sin(v
>
1 x), cos(v

>
2 x), sin(v

>
2 x), . . . cos(v

>
l x), sin(v

>
l x))

For large enough l, one can show that this well approximates the radial basis function.

5.1 A little intuition for the construction

The intuition for this mapping is as follows: Let’s look at the two vectors (cos v>1 x, sin v
>
1 x) and (cos v>1 x

′, sin v>1 x
′)

(which is part of our random features). Using that v1 is sampled from a normal distribution, we have that:

E[(cos v>1 x, i sin v
>
1 x)

>(cos v>1 x
′, i sin v>1 x

′)] = K(x, x′)

where theK above is the radial basis function, the expectation with respect to v1, and i is an imaginary number. So we
see that, in expectation, the above feature mapping is correct. Furthermore, with an appropriate choice of l, it will be
the case that our feature vectors approximates the correct inner products on all relevant points (through a law of large
numbers argument).
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