

Linear separability

- - A dataset is linearly separable iff there exists a separating hyperplane:
 - □ Exists **w**, such that:
 - $w_0 + \sum_i w_i x_i > 0$; if $\mathbf{x} = \{x_1, \dots, x_k\}$ is a positive example
 - $w_0 + \sum_i w_i x_i < 0$; if $\mathbf{x} = \{x_1, \dots, x_k\}$ is a negative example

©Carlos Guestrin 2005-2013

Not linearly separable data

Some datasets are not linearly separable!

©Carlos Guestrin 2005-201

3

Addressing non-linearly separable data – Option 1, non-linear features

- Choose non-linear features, e.g.,
 - $\hfill\Box$ Typical linear features: w_0 + $\sum_i w_i \, x_i$
 - □ Example of non-linear features:
 - Degree 2 polynomials, $w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j$
- Classifier h_w(x) still linear in parameters w
 - □ As easy to learn
 - $\hfill\Box$ Data is linearly separable in higher dimensional spaces
 - □ More discussion later this quarter

©Carlos Guestrin 2005-201

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier h_w(x) that is non-linear in parameters w, e.g.,
 Decision trees, boosting, nearest neighbor, neural networks...
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful
- (BTW. Later this quarter, we'll see that these options are not that different)

©Carlos Guestrin 2005-2013

A small dataset: Miles Per Gallon

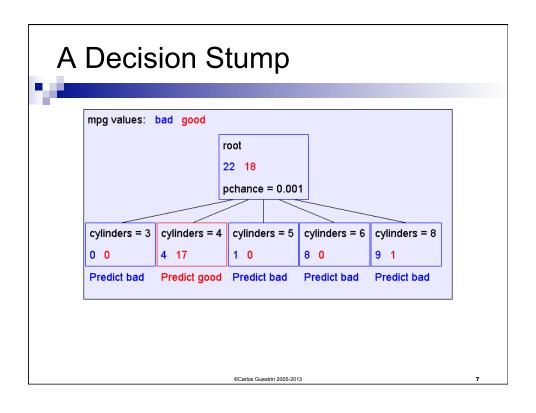
Suppose we want to predict MPG

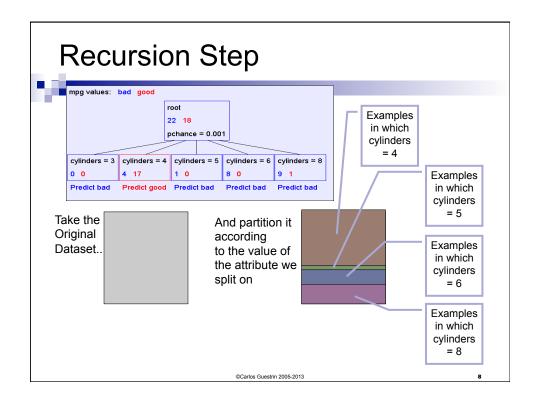
mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:		:	:	:		
:	:		:	:	:		
:	:		:	:	:		
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

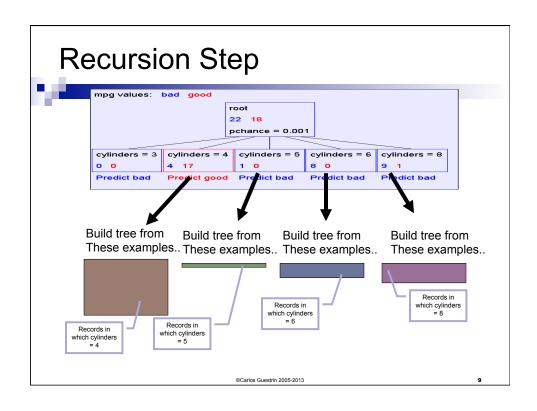
40 training examples

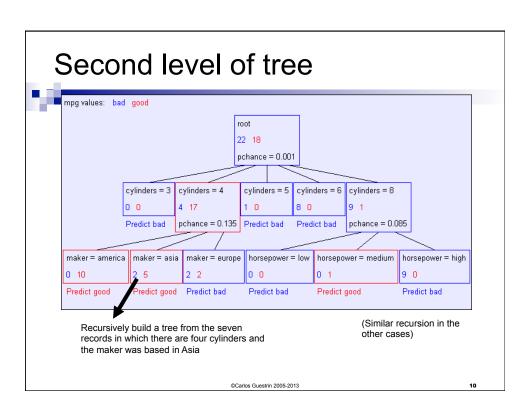
From the UCI repository (thanks to Ross Quinlan)

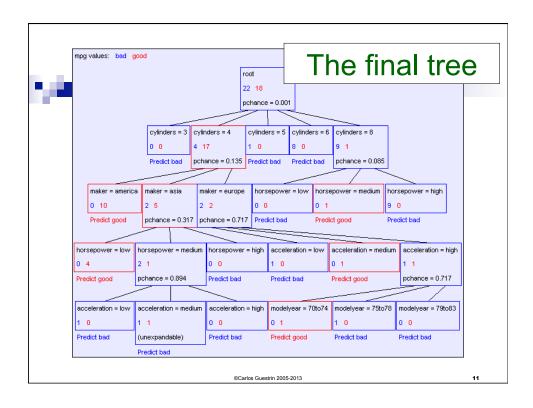
©Carlos Guestrin 2005-2013

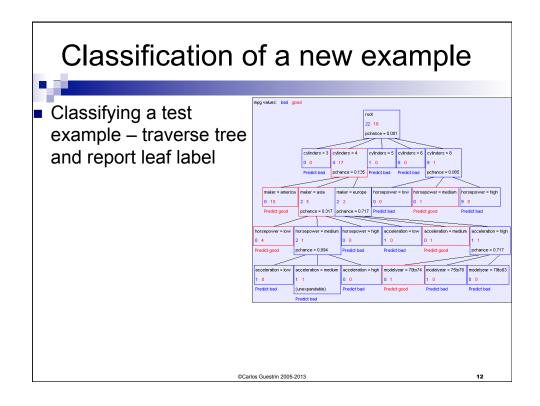












Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 - \square e.g., ϕ = A \land B $\lor \neg$ A \land C ((A and B) or (not A and C))

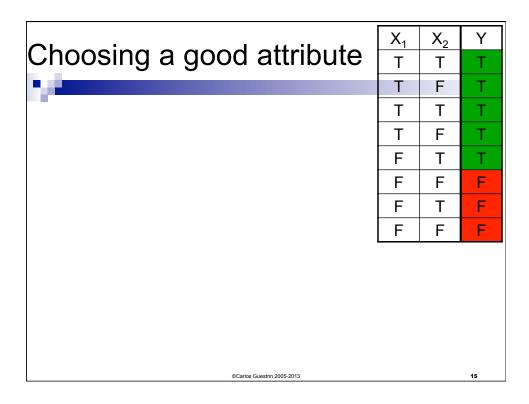
©Carlos Guestrin 2005-201

13

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - $\hfill\Box$ Start from empty decision tree
 - ☐ Split on next best attribute (feature)
 - □ Recurse

©Carlos Guestrin 2005-2013



Measuring uncertainty

- Good split if we are more certain about classification after split
 - $\hfill\Box$ Deterministic good (all true or all false)
 - □ Uniform distribution bad

P(Y=A) = 1/2	P(Y=B) = 1/4	P(Y=C) = 1/8	P(Y=D) = 1/8
--------------	--------------	--------------	--------------

$$P(Y=A) = 1/4$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/4$ $P(Y=D) = 1/4$

©Carlos Guestrin 2005-2013

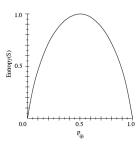
Entropy

Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)



©Carlos Guestrin 2005-2013

17

Υ

 X_2

F

Τ

Т

 X_1

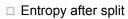
Т

Т

T F

Information gain

- Advantage of attribute decrease in uncertainty
 - □ Entropy of Y before you split



 Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

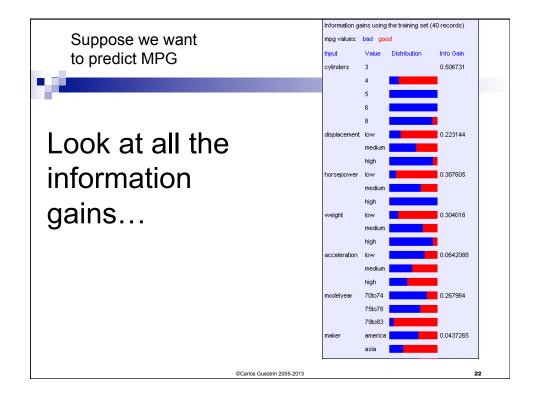
■ Information gain is difference $IG(X) = H(Y) - H(Y \mid X)$

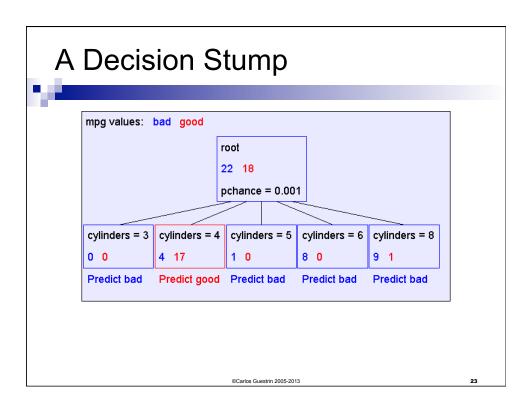
©Carlos Guestrin 2005-2013

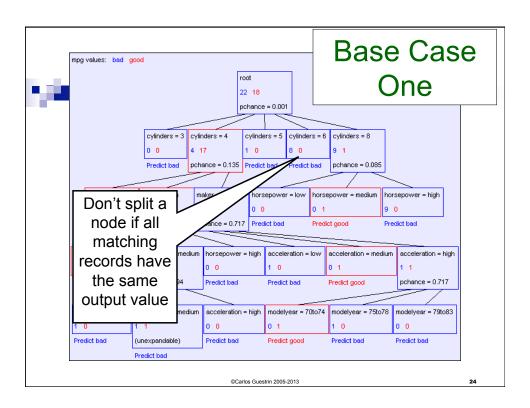
Learning decision trees

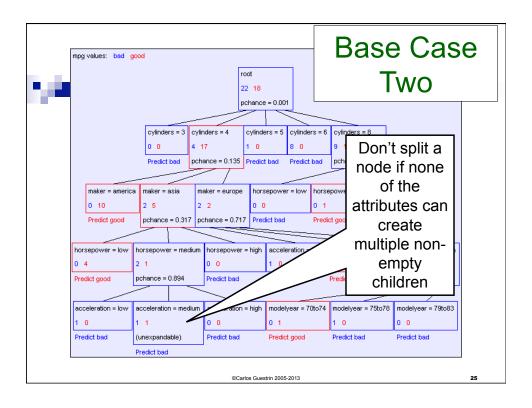
- - Start from empty decision tree
 - Split on next best attribute (feature)
 - □ Use, for example, information gain to select attribute
 - \square Split on $\arg\max_{i}IG(X_{i})=\arg\max_{i}H(Y)-H(Y\mid X_{i})$
 - Recurse

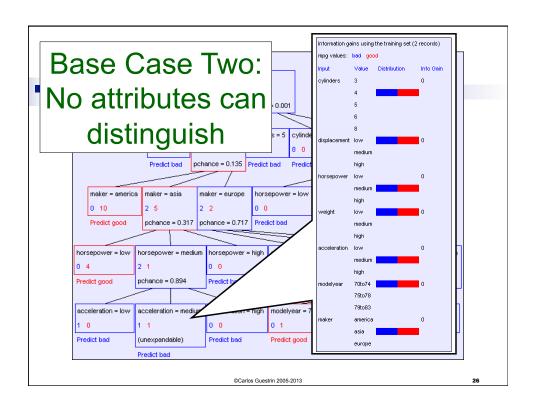
©Carlos Guestrin 2005-201











Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

©Carlos Guestrin 2005-201

27

Base Cases: An idea

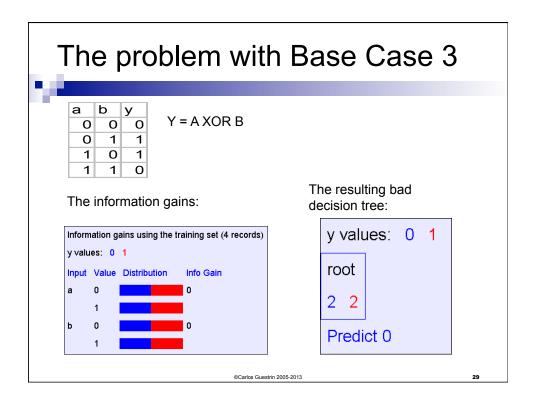
- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

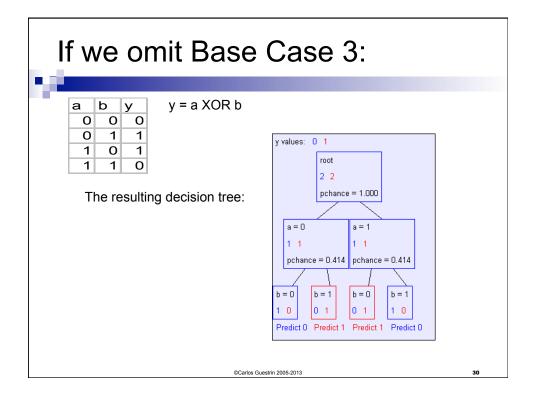
Proposed Base Case 3:

If all attributes have zero information gain then don't recurse

•Is this a good idea?

©Carlos Guestrin 2005-2013





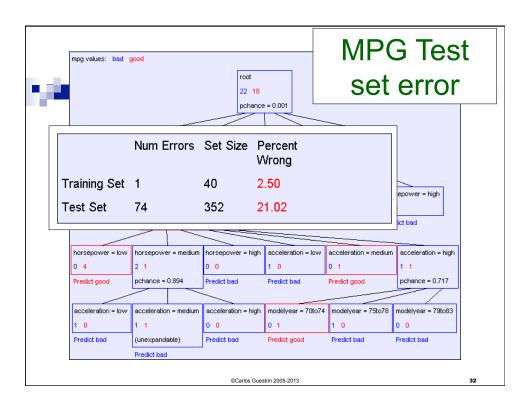
Basic Decision Tree Building Summarized

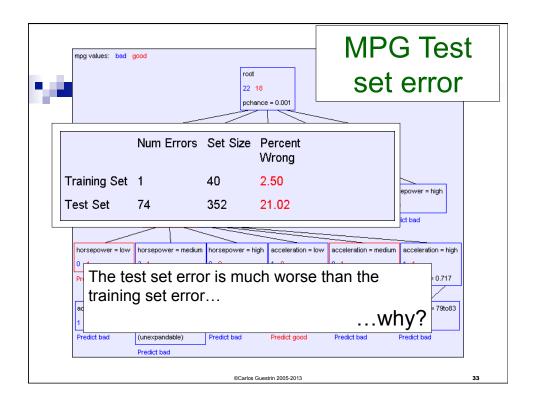
BuildTree(DataSet, Output)

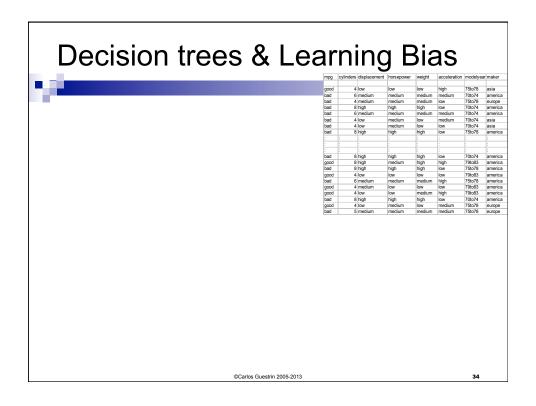
- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - \Box Create and return a non-leaf node with n_X children.
 - ☐ The *i*'th child should be built by calling BuildTree(*DS_i*, *Output*)

Where DS_i built consists of all those records in DataSet for which X = ith distinct value of X.

©Carlos Guestrin 2005-2013



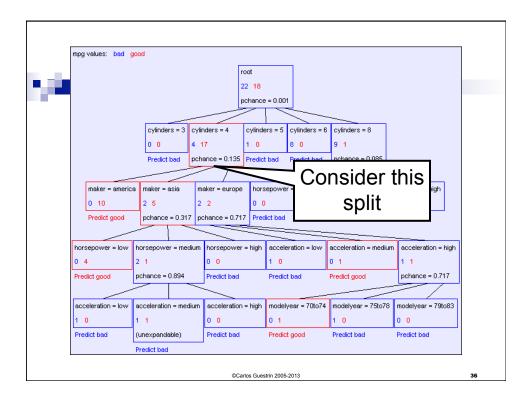




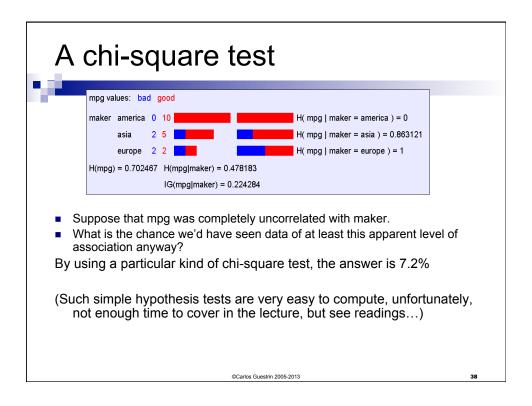
Decision trees will overfit

- 7
 - Standard decision trees have no learning bias
 - ☐ Training set error is always zero!
 - (If there is no label noise)
 - □ Lots of variance
 - □ Will definitely overfit!!!
 - ☐ Must bias towards simpler trees
 - Many strategies for picking simpler trees:
 - ☐ Fixed depth
 - □ Fixed number of leaves
 - □ Or something smarter...

©Carlos Guestrin 2005-2013



A chi-square test | mpg values: bad good | maker america 0 10 | H(mpg | maker = america) = 0 | asia 2 5 | H(mpg | maker = asia) = 0.863121 | europe 2 2 | H(mpg) = 0.702467 | H(mpg|maker) = 0.24284 | Suppose that MPG was completely uncorrelated with maker. What is the chance we'd have seen data of at least this apparent level of association anyway?

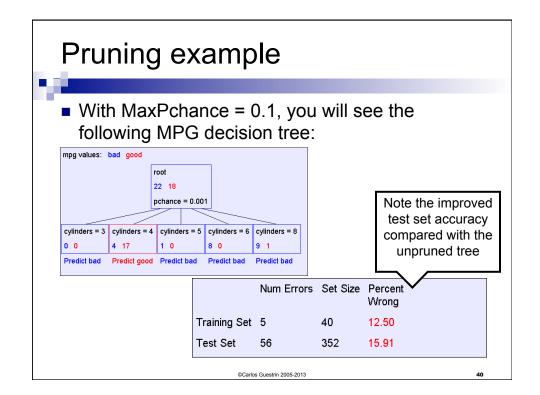


Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - □ Beginning at the bottom of the tree, delete splits in which $p_{chance} > MaxPchance$
 - ☐ Continue working you way up until there are no more prunable nodes

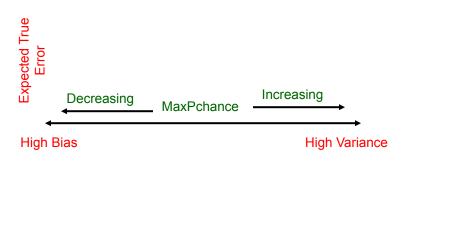
MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

©Carlos Guestrin 2005-2013



MaxPchance

 Technical note MaxPchance is a regularization parameter that helps us bias towards simpler models



Real-Valued inputs

What should we do if some of the inputs are real-valued?

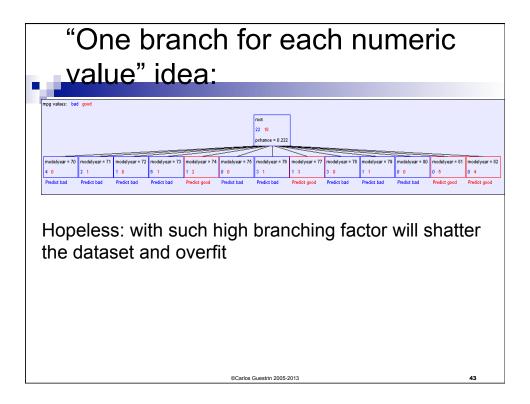
mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:			:		:	:	:
:			:		:	:	:
:			:		:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

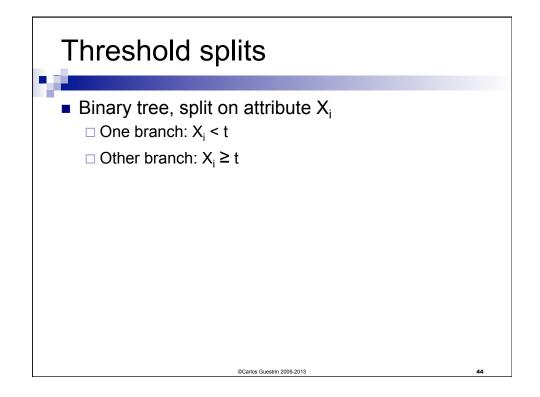
Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

©Carlos Guestrin 2005-2013





Choosing threshold split

- Binary tree, split on attribute X_i
 - □ One branch: X_i < t
 - Other branch: X_i ≥ t
- Search through possible values of t
 - □ Seems hard!!!
- But only finite number of t's are important
 - \square Sort data according to X_i into $\{x_1,...,x_m\}$
 - \Box Consider split points of the form $x_a + (x_{a+1} x_a)/2$

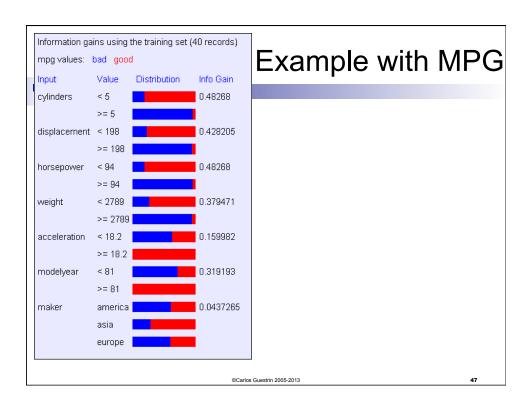
©Carlos Guestrin 2005-2013

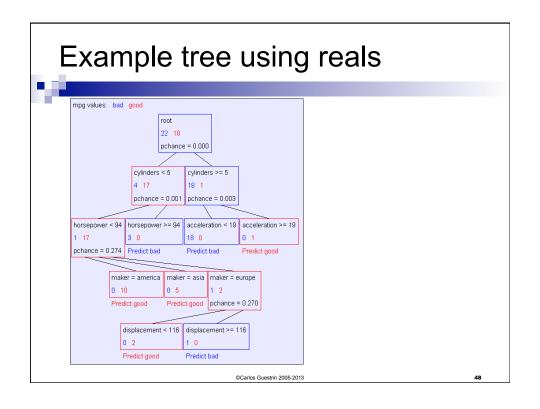
45

A better idea: thresholded splits

- Suppose X_i is real valued
- Define $IG(Y|X_i:t)$ as $H(Y) H(Y|X_i:t)$
- Define $H(Y|X_i:t) = H(Y|X_i < t) P(X_i < t) + H(Y|X_i >= t) P(X_i >= t)$
 - *IG*(Y|X_i:t) is the information gain for predicting Y if all you know is whether X_i is greater than or less than t
- Then define $IG^*(Y|X_i) = max_t IG(Y|X_i:t)$
- For each real-valued attribute, use IG*(Y|X_i) for assessing its suitability as a split
- Note, may split on an attribute multiple times, with different thresholds

©Carlos Guestrin 2005-2013





What you need to know about decision trees

- Decision trees are one of the most popular data mining tools
 - Easy to understand
 - □ Easy to implement
 - □ Easy to use
 - ☐ Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - □ Zero bias classifier! Lots of variance
 - ☐ Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

©Carlos Guestrin 2005-2013

49

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

©Carlos Guestrin 2005-2013